

1

End-to-End learning: Autonomous

driving system based on PilotNet

Zhihui Lai

22598312

Supervisor: Prof. Dr. Thomas Bräunl

 GENG5011/GENG5012 Engineering Honours Research Project

Submitted: 22th Oct. 2021

 Word Count: 12035

Faculty of Engineering and Mathematical Sciences

School of Electrical, Electronic and Computer Engineering

2

Declaration
I, Zhihui Lai, certify that:

This thesis is my own work, and I have appropriately referenced any sources used in

preparing it.

This thesis does not contain any material which has been submitted under any other degree in

my name at any other tertiary institution.

In the future, no part of this thesis will be used in a submission in my name, for any other

degree or diploma in any university or other tertiary institution without the prior approval of

The University of Western Australia and where applicable, any partner institution responsible

for the joint-award of this degree.

This thesis does not infringe on any copyright, trademark, patent or any other rights for any

material belonging to another person.

Date: 22th Oct. 2021

3

Abstract
This thesis aims to continue the research of the ModelCar-2 project and develop a more

functional and reliable autonomous driving system utilizing deep learning. In the previous

ModelCar-2 project, a fully end-to-end method that applies PilotNet neural network was

developed, involving a current image as input (the dataset was collected by Lidar drive mode and

preprocessed) and a steering command and speed as outputs. This method achieved the Lidar-

based methods' performance while presenting advantages like higher and consistent frame rate

and low cost. However, a significant drawback was no past information, imposing an error-

sensitive performance, especially in high speed and complex environments. Spurred by this

deficiency, this thesis introduces two new models: CNN + LSTM and 3DCNN, aiming for

autonomous driving in high-speed and complex environments. This is because in deep learning

methods, despite the current image being damaged by external factors like vibrations and

obstructions on the camera, they can still exploit past images to produce the right steering

decisions. Furthermore, deep learning can learn more complicated driving skills like recovering

from failures and turning around. While building these models, multiple influencing factors are

discussed: memory capacity, dataset balance, TensorFlow version compatibility with Raspberry

Pi, frame rate, and Raspberry Pi’s computing power. The three experiments investigated in this

thesis challenge the CNN + LSTM and 3DCNN model against the original PilotNet and Lidar

models. The first one involves a maze map in the EyeSim simulator, which can run several

models simultaneously and compare their speed, autonomy, and reliability. The second

experiment considers the 4th floor of the EECE building, where the models circle within a

rectangular area separately, and we compare their speed, reliability and autonomy. Finally, the

third experiment is in the corridor of the CME building, where the models turn around in a

narrow corridor separately, and we compare their speed, reliability and autonomy.

4

Table of Contents
Declaration .. 2

Abstract ... 3

List of figures ... 6

List of tables .. 7

Acronyms .. 8

1. Introduction .. 10

1.1 Background ... 10

1.2 Problem Statement ... 12

1.3 Document Structure.. 13

2. Literature Review .. 14

2.1 Autonomous Vehicles ... 14

2.2 Deep Learning concepts and models .. 15

2.2.1 Convolutional Neural Networks .. 15

2.2.2 2016 NVIDIA PilotNet .. 15

2.2.3 Recurrent Neural Networks .. 16

2.2.4 Long Short-Term Memory ... 17

2.2.5 3D Convolutional Neural Networks .. 17

2.2.6 AdmiralNet Bezier Curve Predictor ... 18

2.2.7 Residual Neural Networks ... 22

2.2.8 2020 NVIDIA new PilotNet .. 22

2.2.9 Optical Flow Principle ... 24

2.2.10 AdmiralNet with optical flow .. 24

3. Design .. 25

3.1 Hardware .. 25

3.1.1 ModelCar-2 Autonomous Driving Robot .. 25

3.2 Software .. 26

3.3 ModelCar-2 ... 26

3.4 Neural network models .. 29

3.4.1 Original PilotNet .. 31

5

3.4.2 CNN+LSTM .. 31

3.4.3 3DCNN ... 31

3.4.4 Other models .. 31

4. Method ... 32

4.1 Simulation ... 32

4.1.1 Data collection, preprocessing and augmentation ... 33

4.1.2 Image sequence generation .. 35

4.1.3 Model training ... 35

4.1.4 Validation and comparison methods .. 35

4.2 Practical experiments.. 36

4.2.1 Data collection, preprocessing and augmentation ... 36

4.2.2 Model training ... 39

4.2.3 Validation and comparison method ... 39

5. Results ... 40

5.1 Simulation Results ... 40

5.2 Practical Results .. 44

5.2.1 EECE rectangular loop ... 44

5.2.2 CME corridor ... 47

5.3 Comparison of influencing factors .. 49

5.3.1 Data augmentation ... 49

5.3.2 Batch size .. 51

5.3.3 Training and validation steps .. 52

5.3.4 Memory capacity .. 52

5.3.5 Quality of the dataset ... 53

5.3.6 TensorFlow compatibility .. 53

5.3.7 Speed decaying ... 53

5.3.8 Steering bias .. 54

5.3.9 Frame rate ... 54

6. Conclusion & Future Work .. 56

6.1 Conclusion ... 56

6.2 Future Work .. 56

7. References .. 58

6

List of figures
Figure 1 Camera view (left), Lidar view (right), copied from [3] ... 10

Figure 2 Training the PilotNet, copied from [4] .. 11

Figure 3 ModelCar-2 Autonomous Driving Robot, copied from [6].. 12

Figure 4 Camera image (left), optical flow grayscale image (right) .. 13

Figure 5 Tesla Model S (left), Waymo (right), copied from [9] ... 14

Figure 6 SAE J3016 levels of driving automation, copied from [11] ... 15

Figure 7 PilotNet Architecture, copied from [4] ... 16

Figure 8 A layer of recurrent neurons (left) unrolled through time (right), copied from [12] 16

Figure 9 LSTM cell structure, FC is Fully Connected Layer, copied from [12] ... 17

Figure 10 Comparison of 2D and 3D convolution, copied from [14] .. 18

Figure 11 A F1 style control plot for a test run (left), A plot of the path followed by several deep learning

approaches, copied from [7] ... 19

Figure 12 AdmiralNet Waypoint Predictor architecture, copied from [7] .. 20

Figure 13 AdmiralNet Bezier Curve Predictor architecture, copied from [7] ... 20

Figure 14 Bezier curves and their control points, copied from [16] ... 21

Figure 15 Pure Pursuit Control illustration, copied from [18] .. 21

Figure 16 ResNet structure, copied from [12] .. 22

Figure 17 New PilotNet displaying the Region of Interest (ROI) and 7 desired trajectories, copied from

[19] .. 23

Figure 18 Basic blocks of new PilotNet, copied from [19] .. 23

Figure 19 Full new PilotNet architecture, copied from [19] ... 23

Figure 20 Optical flow explanation, copied from [20] .. 24

Figure 21 AdmiralNet+optical flow architecture, copied from [21] ... 25

Figure 22 ModelCar-2 Appearance ... 27

Figure 23 ModelCar-2 Program Main interface (left) Manual Drive Mode (right) 27

Figure 24 Camera Neural Network Drive Mode (left) Lidar Drive Mode (right) ... 28

Figure 25 Simplified Control Flow for ModelCar-2 ... 28

Figure 26 Original PilotNet Architecture (left) 3DCNN Architecture (sequence length=5) (right) 29

Figure 27 CNN+LSTM Architecture (image c: current image, image c-i, i=1,2,3,4: past 4 images) 30

Figure 28 Optical flow in EyeSim Maze Drive View (Left: original image, right: grayscale image with

optical flow) .. 32

Figure 29 EyeSim Maze Map ... 33

Figure 30 EyeSim Maze Map: Speed Data (left) and Steering Angle Data (right) Distribution 34

Figure 31 Simulation Image preprocessing (left), Simulation Image Augmentation (right) 35

Figure 32 UWA EECE 4th Floor Plan, copied from [5] ... 37

Figure 33 EECE Building: Speed Data (left) and Steering Angle Data (right) Distribution 37

Figure 34 UWA CME Ground Floor Plan ... 38

Figure 35 CME Building: Speed Data (left) and Steering Angle Data (right) Distribution 38

Figure 36 Practical Image preprocessing (left), Practical Image Augmentation (right) 39

Figure 37 Practical Image Augmentation: Brightness ... 39

7

Figure 38 CNN+LSTM prediction in EyeSim maze map ... 41

Figure 39 Simulation models obstacle avoidance test ... 41

Figure 40 PilotNet saliency map in EyeSim maze map ... 42

Figure 41 CNN+LSTM saliency map in EyeSim maze map .. 43

Figure 42 3DCNN saliency map in EyeSim maze map ... 43

Figure 43 EECE CNN+LSTM predictions .. 45

Figure 44 EECE PilotNet Saliency map .. 45

Figure 45 EECE CNN+LSTM Saliency map ... 46

Figure 46 EECE 3DCNN Saliency map .. 46

Figure 47 CME CNN+LSTM predictions ... 48

Figure 48 CME PilotNet saliency map ... 48

Figure 49 CME CNN+LSTM saliency map .. 48

Figure 50 CME 3DCNN saliency map ... 49

Figure 51 CME_CNN+LSTM model loss curve with (second) or without (first) data augmentation

comparison. .. 51

Figure 52 Processing speed of all driving modes and neural network models... 54

List of tables
Table 1 Lidar vs Camera, pros and cons .. 11

Table 2 F1 racing game closed-loop testing results, copied from [6] ... 19

Table 3 Comparison between steering angle predictions, copied from [21] ... 24

Table 4 Hardware table ... 25

Table 5 Software table .. 26

Table 6 Basic parameter settings for model training .. 35

Table 7 Simulation models comparison. ... 40

Table 8 Rectangular loop models comparison. ... 44

Table 9 Corridor models comparison. ... 47

Table 10 Simulation models with (second) or without (first) data augmentation comparison. 49

Table 11 EECE models with (second) or without (first) data augmentation comparison........................... 50

Table 12 CME model with (second) or without (first) data augmentation comparison............................. 50

Table 13 EECE_CNN+LSTM with batch size 1024, 128, 32 (left to right) comparison 51

Table 14 Simulation models with or without more training/validation steps comparison 52

Table 15 Practical models with different input data. ... 53

8

Acronyms
AVs Autonomous Vehicles

NHTSA National Highway Traffic Safety Administration

US United States

Lidar Light Detection and Ranging

CNN Convolutional Neural Network

UWA the University of Western Australia

LSTM Long Short-Term Memory

RoBIOS Robotics Basic Input/Output System

SAE Society of Automotive Engineers

API Application Programming Interface

SLAM Simultaneous Localisation and Mapping

EECE Electrical, Electronic and Computer Engineering

CME Civil and Mechanical Engineering

DNN Deep Neural Network

CPS Cyber-Physical Systems Link

IMU Inertial Measurement Unit

PC Personal Computer

GPS Global Positioning System

PWM Pulse Width Modulation

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

RMSE Root Mean Square Error

DNF Did Not Finish

TBF Mean Time Between Boundary Failures

9

DBF Mean Trajectory Distance Between Boundary Failures

NBF Mean Number of Boundary Failures

LT Lap Turns

MDBF Mean Distance Between Failures

ReLU Rectified Linear Unit

PID Proportional-Integral–Derivative

RC Radio Control

GUI Graphical User Interface

3DCNN Three-dimensional Convolutional Neural Network

ELU Exponential Linear Unit

ResNet Residual Neural Network

TF TensorFlow

FPS Frames Per Second

10

1. Introduction

1.1 Background
The interest in autonomous vehicles (AVs) has increased exponentially in recent years. Even

though AVs could fully replace human drivers at the current stage, there is an irreversible

trend towards full driving automation. In 2018, the US Department of Transportation

National Highway Traffic Safety Administration (NHTSA) reported that 94% of severe

traffic accidents are caused by human error in the US [1]. AVs or computer-assisted driving

systems can significantly reduce fatalities in accidents and thus are promising to solve this

issue. However, there are still many challenges to overcome, as the demand for AVs is not

only to be better than human drivers but also to be economical. Hence, the technology that

can solve these two problems simultaneously is still an open research case.

Currently, most AVs companies are using Lidar to collect data. It is accurate at sensing

distances of the surrounding environment but extremely expensive [2], while an alternative

solution is using a camera and exploiting machine learning algorithms. Since computers

nowadays can learn from a large dataset, using the camera to collect self-driving data is

cheap and severely reduces the time to program complex driving algorithms. If a camera with

machine learning can reach the performance of Lidar, then there is a high probability that we

can afford to market AVs.

Figure 1 Camera view (left), Lidar view (right), copied from [3]

11

Table 1 Lidar vs Camera, pros and cons

 Lidar with a driving algorithm Camera with a neural network

Pro • Stable and mature

• Not sensitive to weather

• Accurate 3D measurement

• Can keep learning from new data

• Cheap

• Can drive in any area

• Nice appearance

• Can read traffic signs

Con • can only drive in a precisely defined area

• exceptionally costive

• Need extra space for sensor

• Need large amounts of data for training

• Sensitive to weather

• Rely on powerful machine learning

• Need a lot of computing power (GPUs)

In 2016 NVIDIA introduced PilotNet, an end-to-end Convolutional Neural Network that

extracts raw pixels from a single front camera image as input and produces steering

commands as output [4]. This network has been proved incredibly powerful, but there is still

much space for improvement, e.g., adding memory to increase driving continuity. This

upgrade to PilotNet can be implemented in several ways: at the input side by using optical

flow to replace raw image as input or at the neural network side by employing Long Short-

Term Memory (LSTM) to combine it with CNN. Another example is to add future

information to increase driving reliability. To implement this, trajectories like waypoints and

Bezier curves can replace the direct control command at the output side. All these methods

have the potential to achieve better steering results with more profound information.

Figure 2 Training the PilotNet, copied from [4]

In 2017, an RC car equipped with a Lidar sensor and a Raspberry Pi named ModelCar was

developed as a research project by a previous student at the University of Western Australia

(UWA). This ModelCar project provided a Lidar-based autonomous driving baseline [5]. Three

years later, another student at UWA continued this project utilizing NVIDIA PilotNet and

performed end-to-end deep learning research by modifying ModelCar with a wide-range camera

12

and a plastic plate. This project named ModelCar-2 provided a camera-based autonomous

driving baseline [6]. The ModelCar-2 now has Lidar drive mode, manual mode, and PilotNet-

drive mode. These features satisfy the prerequisites for further autonomous driving research.

Figure 3 ModelCar-2 Autonomous Driving Robot, copied from [6]

1.2 Problem Statement
This thesis aims to continue the research on the ModelCar-2 project and find a more functional

and reliable autonomous driving system employing deep learning. In the previous ModelCar-2

project, a fully end-to-end method applies the PilotNet neural network was developed, exploiting

a current image as input and providing a steering command and speed as outputs. This method

reached the performance of Lidar-based methods, affording some advantages like higher and

consistent frame rate and low cost. However, it has memory constraints and does not exploit

future information for path planning. These flaws lead to prone-overfitting and overall error-

sensitive performance, especially in high speed and complex environments [7], [8].

There are two approaches to introduce memory in the system. One is to replace raw pixels of the

input image with optical flow imagery. This strategy solves the overfitting problem, as, during

training utilizing the original image, the neural network struggles to memorize every detail.

However, filtering the critical information by optical flow means the neural network has less data

to process. An alternative approach to increase the network’s memory is adding LSTM or 3D

CNN in the PilotNet neural network. In this case, the neural network efficiently operates within a

high-speed and complex environment, as despite the current image being damaged by external

factors like vibrations and obstructions on the camera, the networks still have the past images to

produce the proper steering and speed decisions.

13

Figure 4 Camera image (left), optical flow grayscale image (right)1

To introduce future information in the system, we use a trajectory to replace the direct control

command as output and add an additional controller that transfers the trajectory to control the

commands. This thesis discusses two trajectory types: waypoints and the Bezier curve.

Waypoints are the points represented in the ground 2D coordinates, while a Bezier curve is

defined by a set of control points that fit the waypoints. With the involvement of future

information, the indirect control commands are much more stable than the direct control

commands.

Several advanced neural network models, i.e., the CNN + LSTM + optical flow (pixels to

control), CNN+LSTM (pixels to waypoints), and CNN+LSTM (pixels to Bezier Curves

trajectory), will be discussed. Regarding the CNN+LSTM and 3DCNN, these networks will be

constructed and compared against the PilotNet under the same experimental setup and various

performance metrics, including autonomy, processing speed, mean lap time, and reliability.

1.3 Document Structure
The thesis consists of the following structure: Chapter 2 briefly reviews the development of AVs,

the concepts and models of deep learning; Chapter 3 describes the design preparation for this

project, including hardware, software, and neural network models’ architecture; Chapter 4

presents the methods to implement this project and the methods to evaluate them; Chapter 5

introduces the results of three experiments and compares the influencing factors; Chapter 6

derives the conclusion and future work;

1 Original video from https://www.youtube.com/watch?v=7BjNbkONCFw

https://www.youtube.com/watch?v=7BjNbkONCFw

14

2. Literature Review

2.1 Autonomous Vehicles

Society of Automotive Engineers (SAE) has defined a standard for AVs, ranging from Human

drive (no automation) to Full automation, six different levels in total. This standard clears the

goal of autonomous driving research, and apparently, no AVs have reached the final destination-

Level 5 Full automation yet. The highest level of automation widely recognized to date is

Waymo, formerly the Google self-driving car project, which reached Level 4 High automation.

However, Waymo can only drive in a precisely defined area like Phoenix with the Lidar-based

technique and is exceptionally costive. On the other side, Tesla cars, electric vehicles that utilize

the camera-based approach, are currently at Level 2 Partial automation but learning very fast

with an enormous amount of data coming worldwide [9]. While Waymo can only get data in

Phoenix and is limited by its fleet size and cost, Tesla needs to improve its computer vision

technology with machine learning. Therefore, it is reasonable to think that Tesla will take over

the market in the foreseeable future. Elon Musk is even adamant about saying Tesla will reach

Level 5 Full automation at the end of 2021 [10] and can drive on any raw road without modern

infrastructure. While many experts do not believe him, this message still shows the incredible

highness machine learning can achieve.

Figure 5 Tesla Model S (left), Waymo (right), copied from [9]

15

Figure 6 SAE J3016 levels of driving automation, copied from [11]

2.2 Deep Learning concepts and models

2.2.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a subset of deep neural networks (DNNs) widely

used in image analysis. Inspired by the brain’s visual cortex, CNNs have two core elements:

partially connected layers and weight sharing. Compared with conventional DNNs that use fully

connected layers, these elements significantly reduce the number of parameters and connections

of CNNs.

CNNs basically consist of several convolutional layers, pooling layers, and fully connected

layers. Convolutional layers apply multiple filters to the inputs simultaneously. These filters (or

convolution kernels) are different sets of weights used for filtering the receptive field (part of the

previous layer), so they can map multiple features no matter where they are. Pooling layers

reduce the computational load by subsample (shrink) the size of input images. Two pooling

approaches are commonly used: max-pooling to select only the max value in a receptive field as

output and average-pooling to average the whole receptive field as output. Fully connected layers

are the same as in regular DNNs. They connect all neurons in the current layer to every neuron in

the previous layer [12].

2.2.2 2016 NVIDIA PilotNet

In 2016, NVIDIA launched its end-to-end CNN architecture called PilotNet. End-to-end means

PilotNet can output steering command directly from image input and successfully drive an actual

16

vehicle on public roads [4]. This network is relatively simple, so it has a bunch of space for

improvement.

Figure 7 PilotNet Architecture, copied from [4]

2.2.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is another subset of DNNs, different from CNN, a

feedforward neural network. RNN has connections that feed backward. This feature allows it to

deal with sequential data. However, the standard RNN can only remember a few sequences back,

and the exponentially decaying gradient during backpropagation causes the “Vanishing Gradient

Problem,” so it has not been widely used [12].

Figure 8 A layer of recurrent neurons (left) unrolled through time (right), copied from [12]

17

2.2.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) is developed to solve common RNNs shortages. LSTM

Complicates its calculations with a cell, an input gate, an output gate, and a forget gate.

These features allow it to achieve long-term memory and eliminate the “Vanishing Gradient

Problem” [13]. LSTM networks are usually used to classify and predict time information. If

there is a lag of unknown duration between the basic features in the time series, the LSTM

network can also capture it well. In addition, the relative insensitivity to gap length is a

significant advantage of LSTM over RNN and other sequence learning methods in many

fields.

Figure 9 LSTM cell structure, FC is Fully Connected Layer, copied from [12]

2.2.5 3D Convolutional Neural Networks

A 3D Convolutional Neural Network is a neural network that uses 3D filters (kernels). This

network is beneficial in image processing because 3D filters can extract spatial and temporal

features from a sequence of image inputs hence obtaining action information [14].

18

Figure 10 Comparison of 2D and 3D convolution, copied from [14]

2.2.6 AdmiralNet Bezier Curve Predictor

In 2020, the Cyber-Physical Systems Link (CPS) Lab at University of Virginia (UVA) developed

a novel end-to-end deep learning model named AdmiralNet, combining the original PilotNet,

LSTM, and 3D convolution. This network works well on both the photo-realistic F1 racing

simulator and the 1/10 scale racecar testbed. Unlike the original PilotNet predicting steering

command, they use AdmiralNet to predict Bezier Curve from pixels directly. CPS Lab compared

four different deep learning approaches: PilotNet (pixels to control), CNN-LSTM (pixels to

control), CNN-LSTM (pixels to waypoints), and CNN-LSTM (pixels to Bezier Curves

trajectory). The results are impressive. AdmiralNet Bezier Curve Predictor outperforms all other

approaches[7]. This experiment shows that the autonomous driving system's performance can be

significantly improved by adding memory and predicting trajectory instead of the control

19

command.

Figure 11 A F1 style control plot for a test run (left), A plot of the path followed by several deep learning approaches, copied
from [7]

Table 2 F1 racing game closed-loop testing results, copied from [6]

AdmiralNet Waypoint Predictor outputs predicted future waypoints with a sequence of images as

input. The loss function is composed of position loss and velocity loss [7].

20

Figure 12 AdmiralNet Waypoint Predictor architecture, copied from [7]

AdmiralNet Bezier Curve Predictor outputs predicted Bezier Curve control points of future

waypoints with a sequence of images. This model's loss function is particular: besides position

loss and velocity loss, it appends control-point loss to find the perfect control points for a

sequence of waypoints [7].

Figure 13 AdmiralNet Bezier Curve Predictor architecture, copied from [7]

21

2.2.6.1 Bezier curve principle

A Bezier curve is a parametric curve based on Bernstein Polynomials. It has the following

characteristics: use a few control points to fit a set of points into a smooth and continuous curve;

reshape curve by changing control points; additional control points in part of the curve will not

influence the overall shape [15]. Predicting Bezier curve control points instead of waypoints in

path planning can vastly reduce the computational load and smooth the trajectory.

Figure 14 Bezier curves and their control points, copied from [16]

2.2.6.2 Trajectory Control

Unlike fully end-to-end models that output direct control commands, trajectory outputs must be

fitted into an extra control algorithm to generate steering and throttle commands. Traditional

control algorithms like PID control, Bang-bang control are not suitable for high-speed driving

because these controls cannot handle sharp turns. Pure pursuit control is capable of this task. It is

first introduced in 1985 [17] and has an extensive application in vehicle path following. It

defines a lookahead distance as a product of a tunable parameter and vehicle current speed, so

the faster, the longer vehicle will look ahead. Once the lookahead point is selected from the

waypoints, we can use simplified Ackermann forward kinematics to drive a curve toward it [18].

 Figure 15 Pure Pursuit Control illustration, copied from [18]

22

2.2.7 Residual Neural Networks

A Residual Neural Network (ResNet) is a neural network with skip connections (or shortcuts)

between layers. A skip connection and several convolutional layers compose a residual unit. This

unit typically uses Batch normalization as regularization and rectified linear unit (ReLU) as

activation function. This neural network is often used in more profound neural network training

and can solve the “Vanishing Gradient Problem,” hence speeding up learning [12].

Figure 16 ResNet structure, copied from [12]

2.2.8 2020 NVIDIA new PilotNet

Surprisingly, NVIDIA also experimented “pixels to trajectory” deep learning method and started

just two years after their original PilotNet. In 2020, NVIDIA shared their current achievements

in the paper The NVIDIA PilotNet Experiments. This paper introduces a new PilotNet method

that outputs a predicted trajectory in the car’s local coordinate system. The ground-truth

trajectory is derived from vehicle odometry, inertial measurement unit (IMU), and GPS, then the

data and pixel input are filled in a modified ResNet. PilotNet can also be trained to output up to 7

different trajectories, including lane stable, change to left lane (first half), change to left lane

(second half), change to right lane (first half), change to right lane (second half), split right

23

branch, split left branch. An advantage of the new PilotNet is that it can be easily integrated with

other systems like obstacle detection systems [19].

Figure 17 New PilotNet displaying the Region of Interest (ROI) and 7 desired trajectories, copied from [19]

NVIDIA's new PilotNet has the following layers in sequence: NVIDIA's new PilotNet has the

following layers in sequence:

• One Batch norm year

• Four residual layers

• Two convolution layers

• One flattened layer

• Five linear layers

 It takes a sequence of images as input and outputs various trajectories. For simplicity, we choose

line stable as the only output trajectory [19].

Figure 18 Basic blocks of new PilotNet, copied from [19]

Figure 19 Full new PilotNet architecture, copied from [19]

24

2.2.9 Optical Flow Principle

Optical or optic flow is the apparent movement velocities of objects attributable to relative

motion between viewer and scene. It is extracted from two consecutive frames with space and

time information and can be roughly divided into two categories: sparse optical flow and dense

optical flow. Lucas–Kanade method can calculate Sparse optical flow. This method is suitable

for high noise images. Other methods like Horn–Schunck method and Gunnar Farneback method

can calculate Dense optical flow. Horn–Schunck method uses flow smoothness assumption,

while the Gunnar Farneback method uses polynomial expansion. Optical flow has extensive use

in motion detection and video classification. As shown in Fig. 20, the motion of pixels is

captured.

Figure 20 Optical flow explanation, copied from [20]

2.2.10 AdmiralNet with optical flow

CPS Lab also tried optical flow with their AdmiralNet: optical flow + CNN + LSTM (pixels to

control). Instead of only taking raw image pixels as input, they computed the optical flow vector

field as additional input. The results are astounding. The RMSE of steering angle prediction was

reduced 4 to 6 times [21].

Table 3 Comparison between steering angle predictions, copied from [21]

AdmiralNet with optical flow contains original PilotNet, LSTM, and 3D convolution. To add

optical flow, firstly calculate the optical flow vector fields by Farneback method, secondly

25

separate it into horizontal vector fields and vertical vector fields, finally combine these two

channels with a grayscale image as three channel input [21].

Figure 21 AdmiralNet+optical flow architecture, copied from [21]

3. Design

3.1 Hardware

3.1.1 ModelCar-2 Autonomous Driving Robot

ModelCar-2 is available as a result of a previous student research project [6]. The components

are as follow:

Table 4 Hardware table

Name Type Function

RC car Traxxas Stampede XL-5 Actuator, platform

Embedded Controller Raspberry Pi 4 Model B Central controller that

connects all hardware

Camera 5MP OV5647 Digital Camera

with LS-40180 Fisheye Lens

Deep learning data collector

2D LIDAR Unit Hokuyo URG-04LX-UG01

LIDAR

Data collector, Lidar

autonomous driving mode

Handheld Controller Logitech F710 Gamepad Manual Driving control and

program menu navigation

Power Bank Rock space 10000 mAh

power bank

Power Raspberry Pi and the

LIDAR unit

Screen 3.5 Inch WaveShare LCD

Touchscreen

Display the user interface

Battery Traxxas Battery, 3000mAh

(NiMH, 7-C hump, 8.4V)

Power RC car

26

3.2 Software
Table 5 Software table

Name Function

RoBIOS2 The RoBIOS-7 library is an application programming interface (API)

designed for the ‘EyeBot’ mobile robot family [22] and the ‘EyeSim’

mobile robot simulator [23], available programming languages including

C, C++, and Python.

TensorFlow/Keras3 Keras is an API for Python deep learning. In this project, we need Keras

to build architecture for several neural network models.

OpenCV4 OpenCV is an API for image processing. It can resize, rotate, crop, and

re-format images.

Pygame5 Pygame is an API for video game programming. The function needed

here is joystick control commands.

ServoBlaster6 ServoBlaster is software for Raspberry Pi servo control. It can send

Pulse width modulation (PWM) signals to multiple servos via the

general-purpose input/output (GPIO) pins.

BreezyLidar7 BreezyLidar is software for receiving Lidar data, supporting Python and

C++ in Linux computers.

BreezySLAM8 BreezySLAM is software for processing Lidar data, supporting Python

in Linux computers. It can generate SLAM maps from Lidar data.

3.3 ModelCar-2
Except for replacing the new battery and wrapping the tires with tape to reduce friction, the

overall components of the ModelCar-2 have not changed. It should be noted that the cable

2 https://robotics.ee.uwa.edu.au/eyebot/Robios7.html

3 https://github.com/keras-team/keras

4 https://github.com/opencv/opencv

5 https://github.com/pygame/pygame

6 https://github.com/richardghirst/PiBits/tree/master/ServoBlaster

7 https://github.com/simondlevy/BreezyLidar

8 https://github.com/simondlevy/BreezySLAM

https://robotics.ee.uwa.edu.au/eyebot/Robios7.html
https://github.com/keras-team/keras
https://github.com/opencv/opencv
https://github.com/pygame/pygame
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/simondlevy/BreezyLidar
https://github.com/simondlevy/BreezySLAM

27

connecting the power bank and the Raspberry Pi must transmit a stable current of 2A. Otherwise,

the SD card will be damaged due to an insufficient power supply.

Figure 22 ModelCar-2 Appearance

The ModelCar-2 uses the RoBIOS GUI as the low-level control program, so users can efficiently

operate it via a touch screen or gamepad. There are three driving modes: manual, camera neural

network, and Lidar. The manual drive mode uses the gamepad to control the speed and steer the

robot, and image recordings are possible at a 30Hz frame rate. Lidar drive mode uses the Lidar

sensor to measure the distance of the surrounding environment and then inputs these distances

into a fine-tuned algorithm to calculate the speed and steering of the robot. The camera neural

network drive mode uses the camera to capture images and then feeds these images into a trained

neural network to generate the speed and steering of the robot.

Figure 23 ModelCar-2 Program Main interface (left) Manual Drive Mode (right)

28

Figure 24 Camera Neural Network Drive Mode (left) Lidar Drive Mode (right)

Arrows of different colors indicate the control flow of the three driving modes in Fig. 25.

Figure 25 Simplified Control Flow for ModelCar-2

29

3.4 Neural network models
This part introduces the neural network models intend to design in the project.

Figure 26 Original PilotNet Architecture (left) 3DCNN Architecture (sequence length=5) (right)

𝐼𝑚𝑎𝑔𝑒

Input Layer 3@66x200

Dense Layer 100

Dense Layer 50

Dense Layer 10

Conv2D 24@31x98
5x5 kernel 2x2 stride

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22
5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Conv2D 64@1x18
3x3 kernel 1x1 stride

Flatten 1164

Dropout

Dense

Layer 1:

Speed

Dense

Layer 1:

Steering

Input Normalization

𝐼𝑚𝑎𝑔𝑒
𝑆𝑒quence

Input Layer 3@5x66x200

Dense Layer 100

Dense Layer 50

Dense Layer 10

Conv3D 24@3x31x98
2x3x3 kernel 1x2x2 stride

Conv3D 36@2x14x47
2x3x3 kernel 1x2x2 stride

Conv3D 48@1x6x23
1x3x3 kernel 1x2x2 stride

GlobalAveragePooling3D

48@1x1x1

Dropout

Dense

Layer 1:

Steering

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Dense

Layer 1:

Speed

30

Figure 27 CNN+LSTM Architecture (image c: current image, image c-i, i=1,2,3,4: past 4 images)

LSTM 128

𝐼𝑚𝑎𝑔𝑒 𝑐 − 4

Input Layer 3@66x200

GlobalAveragePooling2D
64@1x1

Dropout

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22

5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Batch Normalization

Conv2D 64@1x18

3x3 kernel 1x1 stride

Conv2D 24@31x98

5x5 kernel 2x2 stride

𝐼𝑚𝑎𝑔𝑒 𝑐-3

Input Layer 3@66x200

GlobalAveragePooling2D
64@1x1

Dropout

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22

5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Batch Normalization

Conv2D 64@1x18

3x3 kernel 1x1 stride

Conv2D 24@31x98

5x5 kernel 2x2 stride

𝐼𝑚𝑎𝑔𝑒 𝑐-2

Input Layer 3@66x200

GlobalAveragePooling2D
64@1x1

Dropout

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22

5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Batch Normalization

Conv2D 64@1x18

3x3 kernel 1x1 stride

Conv2D 24@31x98

5x5 kernel 2x2 stride

𝐼𝑚𝑎𝑔𝑒 𝑐 − 1

Input Layer 3@66x200

GlobalAveragePooling2D
64@1x1

Dropout

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22

5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Batch Normalization

Conv2D 64@1x18

3x3 kernel 1x1 stride

Conv2D 24@31x98

5x5 kernel 2x2 stride

𝐼𝑚𝑎𝑔𝑒 𝑐

Input Layer 3@66x200

GlobalAveragePooling2D
64@1x1

Dropout

Input Normalization

Batch Normalization

Batch Normalization

Batch Normalization

Conv2D 36@14x47

5x5 kernel 2x2 stride

Conv2D 48@5x22

5x5 kernel 2x2 stride

Conv2D 64@3x20

3x3 kernel 1x1 stride

Batch Normalization

Conv2D 64@1x18

3x3 kernel 1x1 stride

Conv2D 24@31x98

5x5 kernel 2x2 stride

Dense Layer 100

Dense Layer 50

Dense Layer 10

Dense Layer 1: Speed Dense Layer 1: Steering

Time Distributed

31

3.4.1 Original PilotNet

The previous work experimented with the original PilotNet using speed as additional output and

dropout for the deep network's regularization [6]. We adopt this architecture, which is illustrated

in Fig.26 left diagram. Input normalization converts the image pixel values from (0-255) ‘uint8’

type to (0-1) ‘float’ type. The activation function used by the model is ‘ELU,’ and its output

range is [0, inf]. If the input is not normalized, the activation function will encounter the

“Exploring Gradient Problem”, so the next two models also applied input normalization.

3.4.2 CNN+LSTM

The CNN+LSTM model (Fig. 27) involves an LSTM layer between the fully connected layers

(dense layer) and the 2D convolutional layers. Furthermore, the input changes from a single

image to an image sequence (in this case, five images in a row), where the current image and

past four images are input into five convolutional layers separately, which are then input into the

LSTM layer together. The LSTM layer can extract information along the timeline and assist the

model in making better decisions. This model also uses GlobalAveragePooling2D layers to

replace the Flatten layers, where the latter layer transforms a multi-dimensional tensor into a

one-dimensional tensor. This transformation has a risk of overfitting, especially for complex

models. However, the GlobalAveragePooling2D layer solves this problem because it sums out

spatial information and has no parameters to optimize. Batch Normalization transforms the data

to a zero mean and a unit variance, reducing the “Vanishing or Exploring Gradient Problem,”

affording a higher learning rate and speeding up the entire training process.

3.4.3 3DCNN

The 3DCNN model (Fig. 26 right diagram) uses 3D convolutional layers instead of 2D, with the

additional dimension employed as a timeline. Specifically, when the input is an image sequence,

it obtains both spatial and temporal information. The GlobalAveragePooling3D layer is similar

to the GlobalAveragePooling2D layer but with an additional dimension for pooling.

3.4.4 Other models

Initially, several models were planned to be built, due to multiple reasons, the following ones

were not developed:

1. CNN+Optical flow

2. ResNet (pixels to waypoints)

3. CNN+LSTM (pixels to waypoints)

4. CNN+LSTM (pixels to Bezier curve)

32

The CNN+optical flow model was intended to be built but was not due to time shortage.

Nevertheless, the preliminary results show the potential of this model, with Fig.28 presenting the

optical flow capturing the essential features, i.e., the walls’ edges.

Figure 28 Optical flow in EyeSim Maze Drive View (Left: original image, right: grayscale image with optical flow)

The ResNet (pixels to waypoints), CNN+LSTM (pixels to waypoints), and CNN+LSTM (pixels

to Bezier curve) models require an IMU or GPS device to record waypoints for neural network

training. These models were not built because no such devices were available during this project.

Additionally, even if these models were built, the computing power required exceeds the

available platform one as Raspberry Pi 4 can barely run the CNN+LSTM (pixels to control)

model, with only input sequences. However, the pixel-to-waypoint and pixel-to-Bezier-curve

models have input and output sequences, further increasing the computational load.

4. Method

4.1 Simulation
Before any practical experiments, it is mandatory to try the neural network models on simulation,

e.g., the EyeSim platform. The latter is a mobile robot simulator for the EyeBot family that can

simulate a mobile car, which has attached a camera, Lidar, a PSD sensor, and an LCD screen for

the camera and data display.

33

Figure 29 EyeSim Maze Map

4.1.1 Data collection, preprocessing and augmentation

Data collection

A well-designed autonomous driving algorithm is preferred against a button control algorithm to

reduce human error when obtaining data for the neural network's training. Thus, we apply a

simulated Lidar-based algorithm to drive the ModelCar-2 in the maze map. During this process,

we exploit the camera to capture images and store them with a labeled steering angle and speed

until adequate training images are captured. 5,110 clockwise driving images and 5,166 anti-

clockwise driving images (10,276 images in total) were collected in the simulation experiment. It

should be noticed that the Lidar drive mode captures 700 images per lap with a frame rate of

10Hz, and thus, 10,276 images require 15 laps to collect, presenting an adequate training data

density. The captured images with labeled steering angle and speed are stored in the npy format,

a NumPy-array format that is small and expandable with additional information like labels.

Considering the speed, 150 is the corresponding stop value. If the speed exceeds 150, the robot

will drive forward. Otherwise, the robot will drive backward. In any case, the higher the value,

the faster the robot moves. Regarding the steering angle, 150 is the value corresponding to a

straight motion. If the steering angle exceeds 150 the robot turns left (maximum value is 200,

corresponding to a 90-degrees left turning). Otherwise, the robot will turn right (100 is the

minimum value, corresponding to 90 degrees right turning). Before the neural network training,

the images are randomly split into three datasets: training, validation, and testing, with the latter

34

involving 0.4% of the total images, and the remaining imagery is split into a 4:1 training-to-

validation ratio.

Figure 30 EyeSim Maze Map: Speed Data (left) and Steering Angle Data (right) Distribution

Data preprocessing

The driving program using RoBIOS API captures 320x240 RGB images. Each image is first

converted to the YUV color space, then passes through a Gaussian blurring filter, and is finally

resized to 200x66. The YUV color space helps adjust the brightness (further details on this

process will be mentioned later). The Gaussian blurring filter smooths the resizing process and

prevents image distortion [24]. Given that 200x66 is the input size of the original PilotNet, the

entire PilotNet architecture is built based on this size, so there is no need to modify that.

Additionally, a smaller size can help reduce the computational load, especially when generating

image sequences for CNN+LSTM and 3DCNN models.

Data augmentation

Data augmentation increases the size of the dataset by generating variants of the data. This can

improve the model’s generalization and robustness [25], but excessive augmentation generates

much noise preventing the model from learning. Thus, the extent of data augmentation needs to

be well considered. This thesis considers two data augmentation types: blurring and flipping.

Blurring helps the model learn more holistic features without overlearning on the minutiae, while

image flipping balances the uneven distribution of left and right steering data, eliminating the

dataset’s inherent bias assisting the models' better learning. Each augmentation is randomly

applied to 5% of the training data in a single batch.

35

Figure 31 Simulation Image preprocessing (left), Simulation Image Augmentation (right)

4.1.2 Image sequence generation

To generate an image sequence for the CNN+LSTM and 3DCNN models, we arrange the

collected pictures in order and use a sequence-length window to slide from the beginning to the

end by sliding one image at a time. Each sequence uses the labels of the last image.

4.1.3 Model training

The model training employs the bagging strategy. Bagging or bootstrap aggregation refers to the

process of randomly sampling the dataset with replacement in each batch [12], significantly

reducing the dataset’s variance. Avoiding overfitting and saving training time can be achieved by

including early stopping, learning rate decaying, batch normalization, and dropout. This project

has a total of three neural network models to train. Thus, we first fit the data into each model

with its specific inputs and then train it on Ubuntu 19.04 with two NVIDIA 1080Ti GPUs. Once

training finishes, we copy the models to the EyeSim model folder for further exploitation.

Table 6 Basic parameter settings for model training

Batch size Training steps Validation steps Epochs Early Stopping Learning rate schedule

32 Number of raining

image /batch size

(If using data

augmentation then

times three)

Number of

validation image

/batch size

100 If the validation

loss does not

improve within

10 epochs, stop.

If the validation loss

does not improve within

four epochs, reduce it to

one-fifth of the original.

(Initial: 0.001,

minimum: 0.000001)

4.1.4 Validation and comparison methods

Open-loop metrics consider the following:

36

i. Separate the training set and validation set with an 0.8 training ratio and then

calculate the Mean Square Error (MSE) of each model.

ii. Calculate the steering angle and speed accuracy of each model.

iii. Display the saliency map to show the inner layer of each neural network model, with

the highlighted saliency map being the model’s focus. If the model is appropriately

learning, the walls’ edges should be the focus.

The training loss (MSE), validation loss (MSE), steering angle accuracy, and speed accuracy are

calculated in each epoch during the model training by Keras API.

Saliency maps are shown after training using the Keras.vis API 9.

Closed-loop metrics consider the following:

We separately run the models in the EyeSim maze map and apply the following metrics:

i. Mean Lap time[18]: if a lap is note finished, the label “did not finish” (DNF) is placed.

ii. 𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦 [3]: The percentage of time the network model drives the vehicle without

human intervention.

𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦 = (1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 × ℎ𝑢𝑚𝑎𝑛 𝑟𝑒𝑠𝑒𝑡 𝑡𝑖𝑚𝑒[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
) × 100%

The ModelCar-2 driving program has a pause function. Each time the robot hits a wall or stops

moving, the pause button will be pressed and counted as an intervention. We set the manual reset

time to 5 seconds. The elapsed time is the total time minus the pause time.

4.2 Practical experiments
This project considers two practical experiments: driving in a rectangular loop and turning

around at a corridor with two dead ends.

4.2.1 Data collection, preprocessing and augmentation

Data collection

We apply the Lidar-based algorithm to drive ModelCar-2 on the 4th floor of the EECE building

and the Ground floor of the CME building.

The 4th floor of the EECE building has a rectangular loop for the Lidar drive mode to run

continuously (Fig.32 red zone). In the Lidar drive mode, we prioritize right-turning first and

collect 30,679 clockwise driving images. Then we prioritized left-turning first and collected

30,518 anti-clockwise driving images (61,197 images in total). The Lidar driving mode captures

9 https://github.com/raghakot/keras-vis

https://github.com/raghakot/keras-vis

37

590 images per lap at a frame rate of 10Hz, and thus, 61,197 images require 104 laps to be

collected. This data density far exceeds the simulation because the natural environment is more

complicated, and data is unevenly distributed. As illustrated in Fig. 33, the steering angle in most

pictures is marked as 150, i.e., the car is driving in a straight line. This unbalance causes the

model to ignore a few turns and fails a correct learning process. Thus, more data are needed to

compensate for this bias.

Figure 32 UWA EECE 4th Floor Plan, copied from [5]

Figure 33 EECE Building: Speed Data (left) and Steering Angle Data (right) Distribution

The Ground floor of the CME building has a corridor with two doors (Fig.34 red zone). If we

close the doors on both sides, the Lidar drive mode can drive and turn around in the corridor

without stopping. This corridor is not wide enough for the robot to make a complete U-turn, so

the robot moves as follows. It stays in the middle of the walls on both sides. If it encounters a

dead end, it turns left until it approaches the wall, turns right, reverses, and finally turns left to

the center of the road to repeat the initial steps. For this scenario, we collected 47,838 images.

The Lidar drive mode captures 560 images in one round trip with a frame rate of 10Hz. Thus,

38

47,838 images need 86 rounds to be collected. The data density is sufficient, but due to the

design defects of the Lidar's driving program, when encountering a dead end, the robot has a

50% chance to turn left and a 50% chance to turn right. This inconsistent behavior is not

conducive to the training of the neural network models, with data cleaning reducing this effect.

Hence, we manually delete the images where the car turns to the right.

Figure 34 UWA CME Ground Floor Plan

Figure 35 CME Building: Speed Data (left) and Steering Angle Data (right) Distribution

Data preprocessing

Practical data preprocessing is mainly the same process as for simulation, except that the images

are taken by a fisheye lens, requiring additional image processing to eliminate lens distortion.

Precisely, the images are cropped 25% of the top and 25% of the bottom before being converted

into YUV color space.

39

Data augmentation

Practical experiments consider an additional data augmentation process, as the brightness of both

places is changing due to sunlight. We randomly modify the image brightness within the range of

[-20%, 20%] and utilize brightness modification on 5% of the training data in a single batch.

Figure 36 Practical Image preprocessing (left), Practical Image Augmentation (right)

Figure 37 Practical Image Augmentation: Brightness

4.2.2 Model training

Practical model training is identical to the simulation. Once finished, we copy the models to the

Raspberry Pi model folder for further manipulation.

4.2.3 Validation and comparison method

The practical validation and comparison methods are identical to the simulation ones.

40

5. Results

5.1 Simulation Results
Table 7 Simulation models comparison.

Test Model CNN+LSTM 3DCNN PilotNet Lidar

Training Loss (MSE) 11.3484 34.6803 29.1005

Validation Loss (MSE) 4.4548 17.8612 8.1348

Speed Accuracy 32.94% 14.19% 24.28%

Steering Accuracy 32.78% 13.72% 22.44%

Mean Lap Time in maze (s) 73.45 73.61 73.94 76.89

Autonomy 100% 100% 100% 100%

Other settings: Batch size=32, Data augmentation=False, Training steps=3*(Number of training image/batch size), Validation

steps=1.6*(Number of validation image/batch size).

Open-loop test

The CNN+LSTM model affords the best performance in the open-loop test, but the metrics

utilized do not necessarily correlate with the real driving performance. This is because the Lidar

drive mode used to collect data is not the optimal solution, as the neural network model may

surpass the performance of Lidar during the learning process. The more the neural network

model mimics the Lidar drive mode, the more it is restricted by the Lidar driving performance.

Closed-loop test

In the closed-loop test, each model is applied on six laps to calculate the mean lap time, and then

each model is subjected to two 10-minute autonomy tests. The results show that the

CNN+LSTM model affords the shortest time per lap, but each model learns from the same speed

samples, suggesting that the CNN+LSTM model attains a better solution and travels a shorter

route. Overall, all neural network models can drive perfectly in a clockwise and a

counterclockwise 10-minute autonomy test without requiring any human. Additionally, all neural

network models are much faster than the Lidar model they learned from. Furthermore, the results

indicate that the Lidar drive algorithm does not apply optimal route planning, deliberately

keeping a distance from each obstacle that significantly limits its driving performance. It is worth

noting that amending to this method optimal route planning requires significant effort, while in

contrast, neural networks learn optimal route planning automatically.

Prediction

41

The prediction process of all neural network models is very similar. Here we use the

CNN+LSTM model as an example. Although the last image of the sequence is illustrated, the

corresponding predictions exploit five consecutive images as input. As presented in Fig.38, the

predicted steering angles are significantly different from the actual ones, without suggesting that

these predictions are not good, as these "wrong" predictions allow the neural network models to

drive the robot better than the Lidar model.

Figure 38 CNN+LSTM prediction in EyeSim maze map

Obstacle avoidance test

In this trial, we add new walls as obstacles to test the model’s ability to avoid obstacles in the

simulation map. All neural network models react to obstacles and change their routes, indicating

that the neural network models have successfully learned to recognize walls and plan routes

based on them. For illustration purposes, the new walls (obstacles) in Fig.39 are marked in red.

Despite the Lidar model avoiding these obstacles, this model is sometimes too sensitive and

forces the robot to turn around. This performance suggests that to avoid these obstacles ideally,

several adjustments have to be made to the Lidar algorithm every time it encounters a new

environment limiting its effectiveness. While the neural network models adapt to the new

environment well without any adjustment.

Figure 39 Simulation models obstacle avoidance test

Saliency Map

42

All neural network models have successfully highlighted the walls in the saliency map. For the

PilotNet saliency map, the red dots (high saliency) are on the walls’ edges (Fig. 40). Regarding

the CNN+LSTM and the 3DCNN, Figs. 41 and 42, respectively, illustrate the outline of the walls

on each saliency map.

In terms of wall recognition, 3DCNN manages a poorer performance than CNN+LSTM because

3DCNN employs only three convolutional layers, while CNN+LSTM utilizes five. Additionally,

CNN+LSTM has the same weight for each image within the image sequence, while 3DCNN

gives the middle image the highest weight. This is because CNN+LSTM processes the temporal

and spatial dimensions separately by first extracting the spatial features in the 2D convolutional

layers and then inputting these features into the LSTM layer to extract the temporal features. In

comparison, 3DCNN extracts both temporal and spatial features utilizing the 3D convolutional

layers [26].

Figure 40 PilotNet saliency map in EyeSim maze map

43

Figure 41 CNN+LSTM saliency map in EyeSim maze map

Figure 42 3DCNN saliency map in EyeSim maze map

44

5.2 Practical Results

5.2.1 EECE rectangular loop
Table 8 Rectangular loop models comparison.

Test Model CNN+LSTM 3DCNN PilotNet Lidar

Training Loss (MSE) 2.5974 4.8579 2.5347

Validation Loss (MSE) 0.7065 1.9746 0.8791

Speed Accuracy 82.89% 75.67% 81.86%

Steering Accuracy 53.27% 40.90% 54.84%

Mean Lap Time(s) 86.63 93.85 49.34 50.65

Autonomy 64.64% 44.10% 100% 100%

Other settings: Batch size=32, Data augmentation=False, Training steps= (Number of training image/batch size), Validation steps= (Number of

validation image/batch size).

Open-loop test

In the open-loop test, the CNN+LSTM model attains the best performance. However, the

models’ performance does not match the closed-loop tests due to data imbalance and lack of

computing power.

Closed-loop test

In the closed-loop test, each model runs three laps clockwise and three laps anti-clockwise to

calculate the mean lap time and autonomy. Among the neural network models, only PilotNet can

drive steadily, with the remaining two models being affected by past images and either turned

too early or too late. Hence, except PilotNet, all methods could not stay in the middle of the road

when going straight.

Prediction

Here we use the CNN+LSTM model predictions to analyze its failure. In Fig.43, the left picture

shows the model did not learn the fine adjustments, as, without fine adjustments, the robot

cannot stay in the middle of the road due to hardware bias. The right picture depicts the case

where the model turned prematurely because the actual size of the robot is relatively large

compared to the camera (it is possible that the camera does not see the wall, but the tire is

blocked).

45

Figure 43 EECE CNN+LSTM predictions

Saliency Map

All neural network models have successfully highlighted the walls’ edges in the saliency map.

Figure 44 EECE PilotNet Saliency map

46

Figure 45 EECE CNN+LSTM Saliency map

Figure 46 EECE 3DCNN Saliency map

47

5.2.2 CME corridor

Table 9 Corridor models comparison.

Test Model CNN+LSTM 3DCNN PilotNet Lidar

Training Loss (MSE) 19.5104 22.2323 51.1504

Validation Loss (MSE) 1.637 2.0445 7.3155

Speed Accuracy 72.17% 60.03% 63.98%

Steering Accuracy 36.05% 34.35% 33.72%

Mean Lap Time(s) 107 108 143 56

Autonomy 84.11% 78.70% 69.23% 100%

Other settings: Batch size=32, Data augmentation=False, Training steps=1.7*(Number of training image/batch size), Validation

steps=1.3*(Number of validation image/batch size).

Open-loop test

In the open-loop test, the CNN+LSTM model performs best, matching the performance of the

closed-loop tests.

Closed-loop test

In the closed-loop test, each model runs six laps to calculate the mean lap time and autonomy.

Among the neural network models, none can complete a lap without human interventions.

Despite both CNN+LSTM and 3DCNN models effectively turning the car around at the dead-

end without human interventions, the car hit the left wall multiple times when driving straight.

On the contrary, PilotNet affords the car to stay in the middle of the wall when going straight,

but it is trembling at the dead end and cannot turn around.

Prediction

Fig.47 illustrates two predictions where the image is labeled with the wrong speed due to Lidar

algorithm flaws, but the CNN+LSTM model predicts it correctly. In the latter figure, the left

picture presents the case where the robot should drive forward, but the image is labeled as

backward, and the right picture illustrates the opposite case. These interferences increase the

training difficulty, but models with image sequences manage a greater tolerance.

48

Figure 47 CME CNN+LSTM predictions

Saliency Map

All neural network models have successfully highlighted the walls’ edges in the saliency map.

Figure 48 CME PilotNet saliency map

Figure 49 CME CNN+LSTM saliency map

49

Figure 50 CME 3DCNN saliency map

5.3 Comparison of influencing factors

5.3.1 Data augmentation

Simulation

Table 10 Simulation models with (second) or without (first) data augmentation comparison.

Test Model Sim_CNN+LSTM Sim_CNN+LSTM_A

Training Loss (MSE) 46.8248 116.4086

Validation Loss (MSE) 20.433 14.7844

Speed Accuracy 14.71% 24.09%

Steering Accuracy 10.82% 11.47%

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch

size). Training steps times three if data augmentation=True.

In the simulation experiment, data augmentation successfully reduces the validation loss of the

model and improves its speed and steering accuracy. However, the actual performance of the two

(with and without data augmentation) is not that different.

50

EECE rectangular loop

Table 11 EECE models with (second) or without (first) data augmentation comparison.

Test Model EECE

_CNN+LSTM

EECE

_CNN+LSTM_A

EECE_PilotNet EECE_PilotNet_A

Training Loss (MSE) 2.5974 13.8415 2.5347 2.7068

Validation Loss (MSE) 0.7065 0.9791 0.8791 1.1525

Speed Accuracy 82.89% 79.82% 81.86% 82.85%

Steering Accuracy 53.27% 44.31% 54.84% 54.20%

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch

size). Training steps times three if data augmentation=True.

In the EECE rectangular loop experiment, none of the data augmentations schemes impacted the

model metrics, presenting a similar performance to not utilizing data augmentation.

CME corridor

Table 12 CME model with (second) or without (first) data augmentation comparison.

Test Model CME_CNN+LSTM CME_CNN+LSTM_A

Training Loss (MSE) 62.716 414.071

Validation Loss (MSE) 4.382 241.3056

Speed Accuracy 59.71% 26.17%

Steering Accuracy 28.69% 10.76%

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch

size). Training steps times three if data augmentation=True. Data augmentation applied on 20% of data instead of 5% in a batch.

In the CME corridor experiment, we applied excessive data augmentation, with the results

indicating that excessive data augmentation preserves a high validation loss and does not afford

the model to converge.

51

Figure 51 CME_CNN+LSTM model loss curve with (second) or without (first) data augmentation comparison.

5.3.2 Batch size
Table 13 EECE_CNN+LSTM with batch size 1024, 128, 32 (left to right) comparison

Test Model EECE_CNN+LSTM_

B1024_A

EECE_CNN+LSTM_

B128_A

EECE_CNN+LSTM_

B32_A

Training Loss (MSE) 15.5774 14.5048 13.8415

Validation Loss (MSE) 6.2114 3.2392 0.9791

Speed Accuracy 59.64% 72.19% 79.82%

Steering Accuracy 25.46% 37.94% 44.31%

* B stand for batch size, A stand for data augmentation.

Other settings: Data augmentation=True, Training steps=3*(Number of training image/batch size), Validation steps= (Number of validation

image/batch size).

The debate on batch size has never been conclusive. Many researchers use large batch sizes

because it improves the efficiency of GPU usage (parallel processing), but many experiments

show that small batch sizes can produce good results in a shorter time [12]. In this experiment,

the batch size has been adjusted many times, with Table 13 highlighting that a smaller batch size

produces better models. This is reasonable, as the more significant the batch size, the more

accurate the learning during each epoch, but the longer the learning time. The large batch size

model will likely be stopped by early stopping before reaching the global optima. Although a

model with a large batch size is more likely to produce the best results, the research time for this

project is limited, and the goal of this experiment is not to reduce the validation loss but to attain

the best real driving performance, so a small batch size is preferred.

52

5.3.3 Training and validation steps
Table 14 Simulation models with or without more training/validation steps comparison

 Model

Test

Sim

_CNN+LSTM

Sim

CNN+LSTM

More_steps

Sim_

PilotNet

Sim_

PilotNet_

More_steps

Training Loss (MSE) 46.8248 11.3484 18.1957 29.1005

Validation Loss (MSE) 20.433 4.4548 9.2673 8.1348

Speed Accuracy 14.71% 32.94% 25.20% 24.28%

Steering Accuracy 10.82% 32.78% 24.77% 22.44%

Normal steps: Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch size).

More steps: Training steps=3*(Number of training image/batch size), Validation steps=1.6*(Number of validation image/batch size).

Other settings: Batch size=32, Data augmentation=False

The model training uses the bagging method, and therefore data can be sampled multiple times

within a batch. If (steps = size of dataset/batch size), then only 63.19% of the data will be

sampled in an epoch, while if (steps =2*size of dataset/batch size) then 86.19% of the data will

be sampled in an epoch, and if (steps =3*size of dataset/batch size) then 95.64% of the data will

be sampled in an epoch.

More training/validation steps ensure the best model training performance, but the training time

increases substantially. From Table 14, the PilotNet presents the best training performance

because more training/validation steps do not significantly reduce the model validation loss.

However, the validation loss of the CNN+LSTM model drops significantly with more

training/validation steps. This also shows that different models require different steps, with a

more complex model usually requiring more steps.

5.3.4 Memory capacity

The 61,197 images collected in the EECE rectangular loop occupy 14.1GB of memory. 14.1x5

(sequence length) = 70.5GB of memory is required to generate image sequences, but our

computer has only 64GB, so we crop the images before creating the sequence (data

preprocessing). The 320x340 RGB image is cropped to 200x66 YUV color space and is only

17% of its original size, so the final image sequences are only 12GB in total, which is within the

computer’s memory capacity.

The computer’s memory size used to train the model determines the upper limit of the dataset,

while more memory is needed to continue increasing the sequence length or sample size.

53

5.3.5 Quality of the dataset
Table 15 Practical models with different input data.

 Model

Test

EECE_

PilotNet_

30k

EECE_

PilotNet _

2x30k

CME_

CNN+LSTM

CME_

CNN+LSTM _

Data_cleaning

Training Loss (MSE) 39.6818 3.0879 62.716 19.5104

Validation Loss (MSE) 29.5848 2.3128 4.382 1.637

Speed Accuracy 15.64% 81.67% 59.71% 72.17%

Steering Accuracy 18.86% 50.94% 28.69% 36.05%

EECE other settings: Batch size=1024, Data augmentation=False, Training steps=300, Validation steps=200.

CME other settings: Batch size=32, Data augmentation=False, Training steps=1.7*(Number of training image/batch size), Validation

steps=1.3*(Number of validation image/batch size).

The data quality plays a decisive role during training the neural network model. The data quality

of the simulation experiment is outstanding because the number of images labeled as a left turn,

straight and right turn is the same.

However, in reality, both datasets present several problems. The EECE PilotNet model is first

trained with 30k images collected by Lidar driving counterclockwise, but the trained model is

prone to turn left and hit the wall. After adding 30k images of clockwise driving with Lidar, the

model enhances its driving stably. The CME CNN+LSTM model is first trained with 47k images

collected by Lidar drive mode, but this Lidar algorithm has a 50% chance of doing left-turning

and a 50% chance of doing right-turning when encountering a dead end. Thus, the trained model

will tremble when it encounters a dead end because it cannot decide whether to turn left or right.

After data cleaning (removing all the right-turning images), the model is trained on 43k images

affording a smoother and faster turn at the dead end.

5.3.6 TensorFlow compatibility

Initially, this project employed TensorFlow 2.6.0, but due to the incompatibility of Raspberry Pi

4, TensorFlow 1.13.0 was used. TensorFlow 1 can be installed on Raspberry Pi directly with the

“pip install tensorflow” command, but TensorFlow 2 needs to install additional plug-ins. The

CNN+LSTM model trained on TensorFlow 1 has 13Hz FPS on Raspberry Pi, but only 3Hz when

trained on TensorFlow 2. The accuracy of TF1 and TF2 are the same, but the training time of

TF2 is only half of TF1, so if in the future the Raspberry Pi can be fully compatible with TF2,

then TF2 is a better choice.

5.3.7 Speed decaying

The speed used in this project is not the real speed but the control command to the motor, which

has no effect on the simulation but has a significant impact on the actual experiment. The actual

54

experiment uses the ServoBlaster API to send PWM signals to control the speed of the robot.

With 100% power, the LIDAR autopilot takes only 50 seconds to complete the rectangular loop

of the EECE, but when the power drops to 60% it takes 59 seconds to complete. The drop in

speed makes the time interval between the collected images inconsistent, with the models

exploiting image sequences as input are very sensitive to it, which largely affects the training

results of these models.

The battery currently utilized is only 3000mAh, replacing it with a larger capacity battery

eliminates the impact of insufficient power supply, but the speed still drops. The best way is to

add an odometer to the robot, then employ it to get the actual speed and maintain the speed by a

PID control algorithm.

5.3.8 Steering bias

In the actual experiment, the robot's steering is not perfectly balanced, and the manual driving

mode reveals that the robot will slightly deviate to the left or right even under the command of

straight ahead. Despite the neural network models are capable of correcting minor deviations

during driving, only the Lidar algorithm can achieve 100% autonomy when the deviation is too

large. Therefore, during the experiment, the front wheel screws need to be manually adjusted to

keep the deviation within the tolerable range.

In fact, this hardware bias can be used to build a more diverse dataset for neural network

training. The current Lidar driving mode stays in the middle of the road when driving straight, so

the corrective behavior after the deviation is not included in the dataset. By adding hardware

deviations, the neural network model has more samples for extreme situations to learn from,

which will significantly increase the stability and reliability of the neural network model.

5.3.9 Frame rate

Figure 52 Processing speed of all driving modes and neural network models

55

Corresponding FPS from Fig 52: Manual FPS= 30.35Hz, PilotNet FPS= 30.32Hz, 3DCNN

FPS=16.33Hz, CNN+LSTM FPS=12.43Hz, Lidar FPS=10.11Hz

The frame rate has a significant impact on the real-time robot driving performance. As the

complexity of the model increases, the longer it takes for the model to predict. After comparing

the input sequence length of the model, the number of neural network model layers, the

TensorFlow version, and other factors, we find that the number of neural network model layers

directly impacts FPS. The 3DCNN model of this experiment uses only three convolutional

layers, while CNN+LSTM uses five convolutional layers and an additional LSTM layer. The gap

in the number of layers imposes the FPS of the CNN+LSTM (12.43Hz) to be less than the

3DCNN (16.33Hz). Increasing the convolutional layer of 3DCNN to five layers afforded the

same FPS as CNN+LSTM.

All neural network models have more minor fluctuations in processing than the Lidar model,

which shows that the neural network models are more stable during operation. The stability will

be a considerable advantage, especially when driving in high-speed and complex environments.

Without replacing the raspberry pi with a higher-performance microcontroller, reducing the

number of model layers can improve the model’s actual performance while not affecting the

open-loop test results.

To replace the Raspberry Pi with a more powerful microcontroller, the jetson with GPU is a

good choice. CPS Lab at UVA, as mentioned in the literature review, also used it to do

experiments and achieved remarkable results in its F1/10 autonomous racing research10. In the

simulation, the FPS of CNN+LSTM and 3DCNN models are the same, if the neural network

model is equipped with a microcontroller with GPU, then the FPS will no longer be a problem,

and I believe that the results will be as good as the simulation experiment.

10 https://deepracing.ai/

https://deepracing.ai/

56

6. Conclusion & Future Work

6.1 Conclusion
This research verifies the significance of End-to-end learning for Autonomous driving systems

and the original PilotNet model improvement by adding LSTM or 3D convolutional layers. The

improvements are:

The model can make more complex motions like turning around at a dead end: In the CME

corridor experiment, the robot needs to make a series of moves to turn around at the dead ends.

These actions are temporally sequenced, but PilotNet does not have access to temporal

information, and these actions for it are like a single input corresponding to multiple outputs.

Both CNN+LSTM and 3DCNN models solve this problem perfectly by virtue of their processing

of temporal information.

Recovery from failures: In the corridor, the robot may not succeed in a single turnaround at a

dead end, but the CNN+LSTM and 3D CNN models repeatedly try until they succeed while

PilotNet stops there.

Lowering the MSE (Mean Square Error): In all experiments, the CNN+LSTM model achieved

the best open-loop test performance. While the 3DCNN only had better open-loop test

performance than PilotNet in the CME experiment, but this is because the 3DCNN tested only

used three convolutional layers, if the 3DCNN uses the same number of convolutional layers as

the other two models, it can achieve similar open-loop test performance as the CNN+LSTM

model.

Suggesting an ideal route and a faster speed: In the simulation experiment, all neural network

models run through a lap faster than the lidar model, with the CNN+LSTM and 3DCNN models

being slightly faster than the PilotNet model. This indicates that the neural network models

optimize the route by themselves, and the addition of LSTM layer or 3D convolutional layers

helps to optimize.

It should be noticed that, in this experiment, the performance of the CNN+LSTM and 3DCNN

models is limited by Raspberry Pi's computing power, as with low FPS, the model cannot turn in

time if the speed is high. Additionally, the inconsistency of the gap between time steps due to

speed decaying increases the difficulty of temporal information extraction.

Besides, the data quality is more important than the model structure. No useful information can

be obtained regardless of the model’s performance if a dataset is affected by too much noise.

6.2 Future Work
Future work shall include the following:

Predicting waypoints using the Inertial Measurement Unit (IMU) to obtain future locations and

optimize the path. IMU is necessary to obtain an accurate vehicle pose and comprises

accelerometers, gyroscopes, and magnetometers that provide an attached object's angular rate,

57

acceleration, and orientation. This device uses a local coordinate system instead of a global

coordinate system like GPS. GPS is unavailable for indoor applications, but IMU does not have

this constraint. Using IMU-odometry fusion, we can derive the pose and direction of the attached

vehicle, with MPU9250 being an excellent choice, as it is small, cheap, and compatible with

Raspberry Pi.

Adding different types of input, i.e., past steering angles and speeds. One feature of Lidar drive

mode that no model can currently emulate is braking. The robot in this project can simulate the

braking effect by reversing the motor. Still, when using images with brakes as a dataset, even a

model using image sequences as input cannot tell when to brake. The driver considers the

immediate view and the speed and direction when judging the brakes, so adding past speed and

steering can help the neural network model learn more complex driving behavior.

Exploiting optical flow and grayscale images as input instead of image sequences. Image

sequences acquire temporal information but significantly increase the complexity of the neural

network model and thus increase the processing time. In contrast, optical flow models can also

acquire temporal information, but with lighter weight inputs and higher frame rates.

Training neural network models to park. The action of turning around at a dead end is similar to

parking. It may be possible to learn parking actions for CNN+LSTM and 3DCNN models. Still,

it is more challenging to learn only with the front camera because the driver usually needs to

look at the scene behind the vehicle and judge when parking. Installing an additional camera at

the robot's rear, and using images from multiple cameras as input can solve this problem.

58

7. References
[1] (2018). Automated Vehicles for Safety. [Online] Available: https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety
[2] N. Mugunthan, S. Balaji, C. Harini, V. H. Naresh, and V. V. Prasannaa, "Comparison Review on

LiDAR vs Camera in Autonomous Vehicle," International Research Journal of Engineering and
Technology (IRJET), vol. 07, no. 08, 2020.

[3] B. Templeton. "Elon Musk's War On LIDAR: Who Is Right And Why Do They Think That?"
https://www.forbes.com/sites/bradtempleton/2019/05/06/elon-musks-war-on-lidar-who-is-
right-and-why-do-they-think-that/?sh=7a7b61142a3b (accessed 15 Apr. 2021.

[4] M. Bojarski et al., "End to End Learning for Self-Driving Cars," 2016.
[5] M. R. Mollison, "High Speed Autonomous Vehicle for Computer Vision Research and Teaching,"

Bachelor of Engineering, School of Electrical, Electronic and Computer Engineering, The
University of Western Australia, 2017.

[6] A. Ryan, "End-to-End Learning for Autonomous Driving Robots," School of Electrical, Electronic
and Computer Engineering, The University of Western Australia, 2020.

[7] T. Weiss, V. SureshBabu, and M. Behl, "DeepRacing AI: Agile Trajectory Synthesis for
Autonomous Racing," Department of Computer Science, University of Virginia, 2020. [Online].
Available: https://www.madhurbehl.com/newpubs/trent2020iros.pdf

[8] L. Bahl. "Speed estimation of car with optical flow." https://github.com/laavanyebahl/speed-
estimation-of-car-with-optical-flow (accessed 6 Apr. 2021.

[9] A. BRAYLON. "Tesla could beat Waymo in the race to self-driving future."
https://www.wheelsjoint.com/tesla-could-beat-waymo-in-the-race-to-self-driving-future/
(accessed 7 Apr. 2021.

[10] J. Klender. "Tesla CEO Elon Musk talks Level 5 Full Autonomy for 2021."
https://www.teslarati.com/tesla-full-autonomy-2021/ (accessed 7 Apr. 2021.

[11] A. Serban, E. Poll, and J. Visser, "A Standard Driven Software Architecture for Fully Autonomous
Vehicles," Journal of Automotive Software Engineering vol. Vol. 00(0), 2020, doi:
https://doi.org/10.2991/jase.d.200212.001.

[12] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow : Concepts,
Tools, and Techniques to Build Intelligent Systems, Second edition ed. O'Reilly Media, 2019.

[13] S. Hochreiter and J. Schmidhuber, "Long Short-term Memory," Neural Computation, vol. 9, pp.
1735-80, 1997, doi: 10.1162/neco.1997.9.8.1735.

[14] S. Ji, W. Xu, M. Yang, and K. Yu, "3D Convolutional Neural Networks for Human Action
Recognition," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 35,
2013, doi: 10.1109/TPAMI.2012.59.

[15] N. E. Pour, "PATH PLANNING OF UNMANNED AERIAL VEHICLES USING PARTICLE SWARM
OPTIMIZATION AND B-SPLINE CURVES," 2009. [Online]. Available: https://search-proquest-
com.ezproxy.library.uwa.edu.au/docview/305136936?pq-origsite=primo. ProQuest
Dissertations Publishing.

[16] M. E. Mortenson, Mathematics for Computer Graphics Applications. Industrial Press Inc., 1999.
[17] R. Wallace, A. Stentz, C. Thorpe, H. Moravec, W. Whittaker, and T. Kanade, "First Results in

Robot Road-Following," 1985. [Online]. Available:
https://www.researchgate.net/publication/220815976_First_Results_in_Robot_Road-Following.

[18] T. Weiss and M. Behl, "DeepRacing: Parameterized Trajectories for Autonomous Racing," 2020.
[Online]. Available: https://arxiv.org/pdf/2005.05178.pdf.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.forbes.com/sites/bradtempleton/2019/05/06/elon-musks-war-on-lidar-who-is-right-and-why-do-they-think-that/?sh=7a7b61142a3b
https://www.forbes.com/sites/bradtempleton/2019/05/06/elon-musks-war-on-lidar-who-is-right-and-why-do-they-think-that/?sh=7a7b61142a3b
https://www.madhurbehl.com/newpubs/trent2020iros.pdf
https://github.com/laavanyebahl/speed-estimation-of-car-with-optical-flow
https://github.com/laavanyebahl/speed-estimation-of-car-with-optical-flow
https://www.wheelsjoint.com/tesla-could-beat-waymo-in-the-race-to-self-driving-future/
https://www.teslarati.com/tesla-full-autonomy-2021/
https://doi.org/10.2991/jase.d.200212.001
https://search-proquest-com.ezproxy.library.uwa.edu.au/docview/305136936?pq-origsite=primo
https://search-proquest-com.ezproxy.library.uwa.edu.au/docview/305136936?pq-origsite=primo
https://www.researchgate.net/publication/220815976_First_Results_in_Robot_Road-Following
https://arxiv.org/pdf/2005.05178.pdf

59

[19] M. Bojarski et al., "The NVIDIA PilotNet Experiments," 2020. [Online]. Available:
https://arxiv.org/abs/2010.08776.

[20] F. Raudies, "Optic flow," in Scholarpedia ed, 2013.
[21] T. Weiss and M. Behl, "DeepRacing: A Framework for Autonomous Racing," 2020, doi:

10.23919/DATE48585.2020.9116486. IEEE.
[22] T. Bräunl, M. Pham, F. Hidalgo, R. Keat, and H. Wahyu, "EyeBot-7 User Guide," ed. University of

Western Australia, School of Electrical, Electronic and Computer Engineering, 2020.
[23] E. V. Team. "Eyesim vr user’s manual." https://robotics.ee.uwa.edu.au/eyesim/ftp/EyeSim-

UserManual.pdf (accessed Oct. 22, 2021).
[24] E. Gedraite and M. Hadad, "Investigation on the effect of a Gaussian Blur in image filtering and

segmentation," presented at the ELMAR, 2011 Proceedings, 2011.
[25] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, "Understanding data augmentation

for classification: when to warp?," Defence Science and Technology, Edinburgh, 2016. [Online].
Available: https://arxiv.org/abs/1609.08764.

[26] J. Mänttäri, S. Broomé, J. Folkesson, and H. Kjellström, "Interpreting video features: a
comparison of 3D convolutional networks and convolutional LSTM networks," 2020. [Online].
Available: https://arxiv.org/abs/2002.00367.

https://arxiv.org/abs/2010.08776
https://robotics.ee.uwa.edu.au/eyesim/ftp/EyeSim-UserManual.pdf
https://robotics.ee.uwa.edu.au/eyesim/ftp/EyeSim-UserManual.pdf
https://arxiv.org/abs/1609.08764
https://arxiv.org/abs/2002.00367

