
University of Western Australia
DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

Final Year Research Project GENG5511/ 5512:

DEEP LEARNING FOR MOBILE ROBOTS

Author:
Shuang-An Yu (Angelo)

Supervisor:
Professor Thomas Bräunl

18th of October 2021
Word Count: 6013

DECLARATION

I declare that the work in this dissertation ”Deep Learning for Mobile Robots”
has been carried out by me for the completion of Master of Professional En-
gineering Degree at the University of Western Australia. This thesis does not
copy or infringe any work by other individuals and institutions. Information
from literature and similar works are acknowledged and cited in the references
provided.

E-Signature Date

Page i

18/10/2021

Abstract

This project aims to apply deep learning using images taken by cameras on
mobile robots to improve autonomous driving. Scope of the project covers lane-
detection and traffic sign recognition in a simulation environment. Past UWA
projects focused mainly on image processing techniques such as edge-detection,
and showed low accuracy in its neural network algorithms for lane-detection.
However, literature states the limitations in image processing such as inaccu-
racy in detecting inconsistent lane markings, and suggests effectiveness in au-
tonomous driving adaptation through deep learning. The research aims build
onto existing neural network algorithms aided with image processing functions
to achieve a fully autonomous mobile robot.

The proposed driving method focuses on convolutional neural networks through
a python virtual environment with Tensorflow, OpenCV and open-source deep
learning packages. Deep learning algorithms is implemented through Tensorflow
models to train data obtained by images through OpenCV functions. Using
analysis tools through Tensorflow, image classification accuracies of over 90%
is seen with “Inception V3” and “PilotNet” convolutional neural network archi-
tectures. The trained neural network models are implemented by mobile robots
to correctly manoeuvre along marked lanes in the virtual environment. Through
testing and simulation, the mobile robot can also be adapted to a foreign envi-
ronment with similar lane markings.

Major failure points of the robot include the inability to error correct once the
robot has deviated from the lane markings. Similarly at certain locations of the
road where low frequency of training data was taken. The solution retrains the
model with an increased number of data points at the designated failure points
to improve Tensorflow prediction accuracy.

The results show that the autonomous mobile robot was able to drive autonomously
and follow lane markings. Troubles start to arise at points of intersections
where there are low training data subsets. Future studies should include imple-
menting a more complex system that allows distance detection of traffic signs
for the mobile robot to travel and stop accurately. Additionally, Tensorflow
models that require less computation time should be researched to reduce jerky
movements caused by low frame rates.

Page i

Acronyms

Acronyms

CNN Convolutional Neural Network.

CPU Central Processing Unit.

DLNN Deep Learning Neural Networks.

FOV Field of View.

GTSRB German Traffic Sign Recognition Benchmark.

ROF Regions of Failure.

SAE The Society of Automotive Engineers.

UWA University of Western Australia.

Page ii

Table of Contents

Table of Contents

1 Introduction 1
1.1 Introduction to Deep Learning . 1
1.2 Problem Statement . 2
1.3 Project Aim . 2
1.4 Document Outline . 3

2 Literature Review 5
2.1 Deep Learning . 5

2.1.1 Neural Networks . 6
2.1.2 Convolutional Neural Networks 6
2.1.3 Mathematical Models of Classifiers (SVM) 7

2.2 Image Processing . 9
2.2.1 Image Enhancement . 9
2.2.2 Shape and Edge Detection 10

2.3 Past Relevant Literature . 10
2.3.1 End to End Lane-Detection 10
2.3.2 Traffic Sign Detection . 12

3 Methodology 14
3.1 Experimental Overview . 14
3.2 Experimental Procedure . 14
3.3 EyeSim Simulation Environment 15
3.4 Software Environment Setup . 16

3.4.1 Processor Speed . 16
3.4.2 Python Environment . 17

3.5 Baseline Measures to Autonomous Driving 18
3.5.1 Traffic Sign Recognition Validation Methods 18
3.5.2 Lane-Detection Validation Methods 19

4 Design Implementation 21
4.1 Proposed Driving Model . 21
4.2 Lane Detection Training . 22

4.2.1 Lane Data Collection . 22
4.2.2 Lane Training . 24

4.3 Traffic Recognition Training . 25
4.3.1 Traffic Sign Data Collection 25

Page iii

4.3.2 Traffic Sign Recognition Training 26
4.3.3 Data Augmentation Through Repetition 27

4.4 Driving Implementation . 27
4.5 Summary of Driving Functions . 28

5 Discussion and Results 29
5.1 Lane Detection Performance . 29

5.1.1 Autonomous Driving Correction and Training Bias 30
5.1.2 Data Augmentation: Deb-bugging 31
5.1.3 Validation Through Foreign Environments 34
5.1.4 Traffic Sign Performance 38
5.1.5 Autonomous Driving Performance 39

6 Conclusion 41
6.1 Conclusion . 41
6.2 Future Works . 42

Appendix A Appendix: Figures 43
A.1 SAE Levels of Automation . 43
A.2 Initial Lane-Detection Training Path 44
A.3 Lane-Detection Validation Run . 44
A.4 Lane-Detection failure: 827 Images 45
A.5 Lane-Detection failure: 1500 Images 45
A.6 Lane-Detection Failure: 3168 images 46
A.7 Lane Detection CNN with 38.1% ROI proportion 46
A.8 Track use to Test Adaptability of CNN Model for Lane correction 47
A.9 Inception Traffic Sign Training Results 48
A.10 Automation of EyeSim Robot- Traffic Sign and Lane Detection . 49

References 50

List of Tables

List of Tables

2.1 Inception-v3 architecture implemented for traffic sign recognition
in [1] . 12

3.1 Computer specifications for project [2] 17

4.1 Data sets taken for lane-detection training, *training data taken
from different system . 24

4.2 First set of collected training images 26
4.3 Second set of collected training images with 5 signs 26
4.4 List of major software files required for training and operating

of deep learning robot. 29

5.1 Frequency of failures at points of interest. Frequency range: (Al-
ways (100% of the time), Frequent (75%), Sometimes (50%),
Seldom (<25%), No failures (0%)) 31

5.2 Frequency of failures at points of interest. Frequency range: (Al-
ways(100% of the time), Frequent (75%), Sometimes (50%), Sel-
dom (<25%), No failures (0%)) 34

Page v

List of Figures

List of Figures

2.1 Relation between Artificial Intelligence, Machine Learning and Deep

Learning . 5
2.2 General architecture of a neural network adapted from [3] 6
2.3 CNN architecture adapted from [4] 7
2.4 Linear Regression model of Random variables [5] 8
2.5 Pattern classifier architecture of SVM [5] 9
2.6 Hyperplane representation, the square and circles can be interpreted

as different features to an image/pattern [5] 9
2.7 Nvidia Proposed CNN architecture for Autonomous Lane-Correction

of vehicles [6] . 11
2.8 High level architecture overview of Lane-Detection system, Nvidia [6] 11
2.9 Data Augmentation through increasing training data sample size through

’bad data’, [1] . 13

3.1 Experimental procedure to training and debugging robot 15
3.2 EyeSim simulation environment with road signs, lane markings and

driving robot . 16
3.3 Software environment setup diagram 18
3.4 Visual data analysis method used in [7] 19

4.1 Propose high level architecture for autonomous driving vehicle 22
4.2 Data collection method for training sample collection for lane correction. 23
4.3 Data collection method proposed in [6] 23
4.4 Neural network training time to data set sample size 25
4.5 Buckets (files) with image data sets for neural network training 26
4.6 General software overflow of traffic sign training 27

5.1 EyeSim robot is placed in ’wrong lane’ 30
5.2 Robot exhibits lane change correction due to training bias 30
5.3 Increase data portion at regions with high failure rates 33

Page vi

List of Figures

5.4 New Track for lane detection validation 35
5.5 ROF where EyeSim robot starts to fail 35
5.6 Robot’s turning angles from training data 36
5.7 Robot’s turning angles from training data compared to average angle

distribution from the New Test Environment 36
5.8 Successful adaptation of EyeSim robot to new environment (Race track

adapted from [8] . 37
5.9 Successful recognition of real life stop sign with low prediction confi-

dence interval. 39
5.10 Performance of Pre-trained DLNNs [9] 39

A.1 SAE levels of Automation by [10] . 43
A.2 Path taken by robot during image collection for deep learning 44
A.3 Path taken by CNN trained Autonomous robot in EyeSim within the

same training environment . 44
A.4 Initial trained robot with 800 images and no data repetition 45
A.5 Initial trained robot with 1500 images and no data repetition 45
A.6 Path taken by CNN trained Autonomous robot with 3000 images and

no data repetition . 46
A.7 Successful lane detection with ROF 46
A.8 Test track adapted from [8] . 47
A.9 Tensorflow training summary for 5 traffic signs 48
A.10 Tensorflow training summary for 2 traffic signs 48
A.11 Automated mobile robot . 49

Page vii

1. Introduction

1.1 Introduction to Deep Learning

In recent years, deep learning has grown in the field of autonomous driving.

Deep learning is a method of machine learning that utilises complex data re-

lations known as neural networks [11]. The ideology of neural networks are

based off neurons in the human brain. With conventional computer learning

algorithms, engineers are able to simulate human neurons through non-linear re-

lationships [12]. A main category of deep learning commonly used in image

processing is CNN, Convolutional Neural Networks [13]. Additional methods of

deep learning techniques include recurrent neural networks (RNN), Long short

term memory networks LSTM [13]. These neural networks can be used to

train classifiers, which are trained machine algorithms that allow higher level

operations such as handwriting identification and speech recognition [11]. Au-

tonomous driving is a common implementation of image processing and deep

learning. It consists of taking data from a wide range of input sensors to stim-

ulate decision making.

Images taken from a simple camera can be used as inputs to deep learning

processes. All visual images can be defined in terms of mathematical matrices

through Hue Saturation Values (HSV), Red Green Blue colour scales (RGB), or

gray-scales. Image processing are mathematical-based operations that enhances

Page 1

images using these image matrices. Other techniques of image processing in-

clude colour space conversions and image noise removal through Gaussian fil-

ters [14]. Higher level image processing can allow shape analysis, edge smooth-

ing and edge detection which are commonly used for operations such as au-

tonomous object classification [15].

1.2 Problem Statement

Methods of computer vision may be limited by real world inconsistencies. For

example, lanes markings may be inconsistent, markings may fade, this results in

limited accuracy through image processing techniques to lane-detect and error-

correct. Through previous literature, deep learning methods such as convolu-

tional neural networks is proved to compensate for such outliers by applying

adequate training and data sample-size.

The scope of this project covers deep learning algorithms to traffic-sign detec-

tion and autonomous lane-correction of mobile robots. The implementation is

simulated the UWA Eyebot Simulation system (EyeSim) developed by Professor

Thomas Braunl [16]. The main tools implemented are python-based packages

such as Tensorflow and OpenCV for deep learning and image processing. Both

are open source libraries that can be executed in python, C and C++.

1.3 Project Aim

The aim of the project is to explore methods of deep learning assisted with

image processing techniques to improve on autonomous driving accuracy. The

final goal is to design an accurate autonomous driving model that requires little

to no human intervention.

Page 2

The main project deliverables include:

1. Implement existing deep learning algorithms to an autonomous driving ve-

hicle to allow lane detection within the EyeSim system

2. Implement existing deep learning algorithms for traffic sign recognition in

the EyeSim system

3. Analyse and improve the performance of the trained neural network mod-

els through Data Augmentation1

4. Design and implement an autonomous driving model by integrating traffic

sign and lane detection in the EyeSim system

1.4 Document Outline

The first chapter introduces the problem statement and aims of the project.

Background information is provided to aid the reader to understanding the con-

text of this project.

The second chapter outlines mathematical models relating to background infor-

mation of the project. Past projects and State-of-the-art literature are discussed

to guide project methodologies. This sets a baseline to results and discussion

of the project.

Chapter three Methodologies cover the major steps and architectural frameworks

to the project. Diagrams and explanations of the proposed model for lane and

traffic detection. Moreover includes setup and programs to for the overall de-

livery.

1Data Augmentation: Training data adjustments through computer vision techniques or manual
adjustments to acquire a larger, unbiased data set.

Page 3

The fourth chapter contains detailed explanation on the model design and ex-

perimental procedures. This includes the proposed final model, software setup

and implementation of training methodologies.

Results of proposed experiments and implementation are outlined in Chapter

five. The section outlines the overall performance of the proposed model by

assessing it with relevant literature.

Chapter 6 concludes the thesis by summarising the overall experiments and find-

ings. Providing recommendations and remarks for future works in the area.

Page 4

2. Literature Review

2.1 Deep Learning

Deep learning is defined as a subset of Artificial Intelligence and Machine

learning. Artificial intelligence encompasses the broad study of self-learning and

self-problem solving abilities for a computer. Where machine learning is com-

puter learning techniques with or without human intervention [17]. The relation

is shown in figure 2.1.

Figure 2.1: Relation between Artificial Intelligence, Machine Learning and Deep
Learning

Different to its higher level subsets, deep learning is defined by layered al-

gorithms that allows the computer to compute lower level operations such as

image and speech recognition [17]. The primary goal of deep learning algo-

rithms is to calculate a regression path to identify between different images and

Page 5

speech patterns.

2.1.1 Neural Networks

The basic structure of neural networks consists of three basic architectures, in-

puts, outputs and weights. Similar to axons in human brain cells, weights

are the paths that the neural network information moves across; where dif-

ferent paths would indicate different weightings of importance [18]. The role

of the neurons are to classify the identity of specific features [18], where the

whole system is a network of so called ’classifiers’ make decisions based on

the synaptic relations between themselves [5].

Figure 2.2: General architecture of a neural network adapted from [3]

From figure 2.2 a hidden middle layer is shown. These are hidden neurons

that makes up the internal structure of the deep learning decision tree [18].

The layers can be abstracted as a series of lower level yes/no questions, for

example: does this entity have a nose? does it have fur? With outputs being

defined as a classified object.

2.1.2 Convolutional Neural Networks

CNN, convolutional neural networks is a type of neural network that utilises

three different sub-processes for training. Those are: feature extraction, feature

Page 6

mapping and subsampling [5]. The structure between the three processes can be

visualised in figure 2.3 below.

Figure 2.3: CNN architecture adapted from [4]

To train the CNN classifier, individual neurons extracts features from pre-known

inputs and between neurons. This is done within the hidden layers through

mathematical filtering. In parallel, each hidden layer adjusts its weight path

(decision making bias) within each kernel through convolutional operations and

weight sharing; this is known as feature mapping [5], [18]. Subsampling is a

process applied to each set of feature maps to reduce the mapping resolution,

this allows the classifier to reduce training bias from insignificant low weighted

features through averaging.

This technique of semi-supervised neural networking works exceptionally well in

image processing [17]. As it allows break-down of images into multiple layered

kernels that operate on small number of pixels. It reduces the complexity of

classification by limiting the number of selection parameters for the neurons

with weight sharing, eliminating chances of over-fitting the classifier [11].

2.1.3 Mathematical Models of Classifiers (SVM)

The mathematical ideology of classifiers for neural networks are covered in [19]

and [5]. The methodologies use a probabilistic approach with regression and

weighting vectors to the networking of neurons. The main goal of this method

Page 7

is to fit mathematical models that separates two different variable parameters.

The basic relations can be explained through correlation equations [5]:

d = [
M

∑
j=1

w jx j + ε] (2.1)

x j and w j are the correlation of inputs and weight values to the model re-

spectively; Where the output, d is the desired response and is defined as a

’convolution’ of the weight matrix and input matrix. Different methods of re-

gression such Least mean square Method1 are based off fitting of weight matrix

values through probabilistic equations of random variables.

Figure 2.4: Linear Regression model of Random variables [5]

A build onto regression is Support Vector Machines (SVM). SVM is a binary

learning machine that solves pattern-classification and non-linear regression mod-

els [5]. In a way, SVM’s acts as a basis to CNN’s studied in the previous

section, as SVM’s are able to cover feature mapping, and kernel operations.

Figure 2.5 below shows pattern recognition structure with SVM. It consists of

a non-linear mapping, followed by a linear regression to separate features that

came from the input space. The output of the SVM attempts to divide features

through a hyperplane visualised below. A hyperplane allows mathematical sep-

1Method of adaptive filtering

Page 8

Figure 2.5: Pattern classifier architecture of SVM [5]

aration of φ(xi), feature vectors [5]. By finding a plane, it creates a threshold

for classification of features such as in an image.

Figure 2.6: Hyperplane representation, the square and circles can be interpreted as
different features to an image/pattern [5]

2.2 Image Processing

2.2.1 Image Enhancement

Enhancement techniques covered in [20] suggests mathematical filtering tech-

niques. Filters include: Low-pass filtering, High-pass filtering and Adaptive fil-

tering. Filtering is good in removing noise and smoothing out images through

blurring. Subsequently it also permits the opposite, increasing image noise to

Page 9

sharpen edges of buildings and shapes in images (high-pass filtering) [20]. The

mathematical operators of filtering are based of convolutions of matrices that

often used in signal processing. Colour conversions also serve as basis to sim-

plifying images for processing, examples include Gray-Scale Modification and

RGB to HSV colour-scale conversions.

2.2.2 Shape and Edge Detection

Straight-line detection through Hough-transformations is a useful tool in findings

straight edges at arbitrary locations [20]. This method of detection can also be

used for specific functions such as vertical line detection. Canny Edge Detec-

tion is another method of processing that identifies unique lines and edges in

an image. This form of operation is useful in determining edges of objects by

contouring its perimeter [21].

Using edge-detection and simple grey-scaling, shape detection can be achieved

to a high accuracy as shown in [22]. From contouring objects, its features

(area, length, form factors etc.) could be analysed to group it into predefined

shapes.

2.3 Past Relevant Literature

2.3.1 End to End Lane-Detection

Well recognised State-of-the-Art implementation of deep learning in autonomous

lane correction include [6] by Nvidia in 2016. The proposed system composes

of a CNN system that is trained and simulated to predict lane correction steer-

ing outputs for autonomous driving shown in figure 2.7. The network uses a

66× 200 pixel sized input image as input into a driving simulator. The final

Page 10

results was deep to have 98% accuracy in lane keeping.

Figure 2.7: Nvidia Proposed CNN architecture for Autonomous Lane-Correction of
vehicles [6]

Similar studies and implementations of CNN lane-correction in vehicles include

[23] [7] [24]. The general end to end driving methodology composes of data

collection, training, and simulation through simple interface of trained CNN

classifiers (figure 2.8)

Figure 2.8: High level architecture overview of Lane-Detection system, Nvidia [6]

Simulations were a implemented in real world road conditions. However, data

images from the literature are limited to a few conditions: roads were either

straight or turns, no evidence of lane changing [23]. Literature also states the

Page 11

evident turning angle bias due to uneven spread of ”straight” and ”turn” images

in the training data sets [6]. Lane markings such as dotted giveway lines, zebra

crossings and broken lane markings were also inevident.

2.3.2 Traffic Sign Detection

The German Traffic Sign Benchmark study (GTSRB) in 2011 has a set a base-

line to traffic sign recognition through The study of traffic sign detection through

neural networks implemented by The German Benchmark [25] in 2011 has set a

baseline to recent year literature. The deep learning model from [25] normalises

images through image processing methods to a large training data sample size

such as HOGs (histogram oriented graidents) and gray-scaling.

2.3.2.1 Pre-trained Classifiers

In 2018, the GTSRB baseline is improved on by [1] through Google’s deep

learning architecture Inception-v3 with average accuracy of 99.09%. Inception-

v3 is one of Google’s pre-trained CNN allowing high accuracy of image detec-

tion proved in [1] [9].

Table 2.1: Inception-v3 architecture implemented for traffic sign recognition in
[1]

Layers Maps & Size Filter Size Layers Maps & Size Filter Size
input 3 & 299 × 299 - mixed3 768 & 17 × 17 1 × 1,3 × 3
conv2d 1 32 & 149 × 149 3 × 3 mixed4 768 & 17 × 17 1 × 1,3 × 3,1 × 7,7 × 1
conv2d 2 32 & 147 × 147 3 × 3 mixed5 768 & 17 × 17 1 × 1,3 × 3,1 × 7,7 × 1
conv2d 3 64 & 147 × 147 3 × 3 mixed6 768 & 17 × 17 1 × 1,3 × 3,1 × 7,7 × 1
conv2d 4 80 & 73 × 73 1 × 1 mixed7 768 & 17 × 17 1 × 1,3 × 3,1 × 7,7 × 1
conv2d 5 192 & 71 × 71 3 × 3 mixed8 1280 & 8 × 8 1 × 1,3 × 3,1 × 7,7 × 1
mixed01 256 & 35 × 35 1 × 1,3 × 3 mixed9 2048 & 8 × 8 1 × 1,3 × 3,1 × 3,3 × 1
mixed1 288 & 35 × 35 1 × 1,3 × 3,5 × 5 mixed10 2048 & 8 × 8 1 × 1,3 × 3,1 × 3,3 × 1
mixed2 288 & 35 × 35 1 × 1,3 × 3 output 62 & 62 × 1 Classifier

Table 2.1 shows mapping architecture of Inception-v3 based CNN. The classifier

intakes a size 299 by 299 input and goes through high density pipeline of con-

Page 12

volutional mapping and feature extraction. The filter size for the feature kernels

run down to 1 by 1 pixel size to reduce training speed [1].

Many other different pre-trained neural networks exists and open-source to the

public [9]. The highest accuracy deep learning neural network is DenseNet-

201 [9], however downsides include substantially increased training times and

requirements for high power GPU and CPU.

2.3.2.2 Data Augmentation

Data augmentation is commonly applied to deep learning models to reduce bias

and increase robustness in image classification [1] [26]. Common methods of

augmentation include increasing ’bad data’ sample size [25] and addition of

noise through Gaussian filters [26]. This is a major advantage over traditional

image processing techniques. Whereby algorithms such as colour histograms and

shape detection would have lower rate of image recognition due to its mathe-

matical constraints [21].

Figure 2.9: Data Augmentation through increasing training data sample size
through ’bad data’, [1]

From [1], data augmentation is applied to traffic signs. This includes collecting

images of traffic signs that have glare, angled and damaged signs, moreover

applying filters and flipping images. It allows enlargement of the training data

Page 13

sample size to reduce bias in the model prediction. This method increases clas-

sifier reliability by increasing the variation in training data spectrum.

3. Methodology

This section of the report outlines the experimental procedures, software setup,

hardware requirements and methodological approaches to data validation from

State-of-the-art literature.

3.1 Experimental Overview

The fourth aim of the project is to design and implement a high level au-

tonomous system. The ultimate goal is to produce a fully autonomous driving

system defined by level five autonomy from SAE standards shown in Appendix

A.1. The proposed system simulates autonomous robot at a level three system-

high level of automation under specific geographical circumstances [10].

3.2 Experimental Procedure

The overall experimental procedure and design consists of:

1. Design of the autonomous driving system flow

2. Data collection in EyeSim environment (images, steering angle data)

3. Pre-processing of training data (data augmentation)

4. Training of CNN classifiers through python-tensorflow and deep learning

packages

Page 14

5. Implementation of autonomous driving system to EyeSim for analysis and

debugging

6. Repetition from 1-5

Figure 3.1: Experimental procedure to training and debugging robot

3.3 EyeSim Simulation Environment

The EyeSim virtual environment replicates is used as the primary simulation

program for the project. It provides a real-world driving scenario with road

markings and traffic signs [16]. The system is able to imitate real-world physics

such as obstacle collision and object inertia. Custom roads and traffic markings

can be implemented to suit the experimental design.

The coding environment of the inbuilt mobile driving robots are primarily based-

off C and C++ program language. Python can be run with the assistance of a

Linux based programming shell such as through Big Sur1, Ubuntu, or WSL2.

From the figure 3.2, the necessary markings are developed in the EyeSim sys-

tem. The main addition factor compared to past implementations of autonomous

lane-detection include the stop lines, give way lines and zebra crossing mark-

ings. This allows the behaviour of lane-detection at different lane markings to

1Apple Mac operating system
2Windows Subsystem for Linux

Page 15

Figure 3.2: EyeSim simulation environment with road signs, lane markings and
driving robot

be studied. As not many literature explores into the behaviour of model and

lane-detection prediction at intersections that require decision making.

3.4 Software Environment Setup

3.4.1 Processor Speed

The main software environment setup is operated on the Apple M1 Mac book

pro with ARM64 based CPU architecture. Computer processing speed and multi-

core operation of the GPU (Graphics Processing Unit) is important to speed up

the process of running CNN algorithms. The hardware and processor bench-

marks provided in [27] states there is small difference in deep learning perfor-

mance between medium and high thread CPU’s (4 - 32 core CPU’s). Therefore

the following computer specifications listed in 3.1 are sufficient for CNN deep

learning of the project.

Page 16

Table 3.1: Computer specifications for project [2]

Part Specifications

CPU
3.2GHz Clock
8-core CPU

GPU
8-core GPU
16-core Neural Engine

RAM 8GB

3.4.2 Python Environment

To integrate between the EyeSim system and terminal of the Apple Mac, Intel

emulator must be installed to run all necessary python packages for the project.

The emulator (Rosetta 2) allows interpretation of x86 bit compiled python pack-

ages to be used within the Apple Mac and EyeSim environment [28]. As of

current time, the EyeSim software is not fully available for the M1 mac archi-

tecture. Therefore to prevent build errors, the author recommends to build the

python and EyeSim environment through Rosetta 2 emulator.

The following python packages are implemented in past literature such as [23]

[24] [1] [26] [29] and are necessary in running the deep learning and drive

functions in EyeSim.

• Tensorflow - Python open source machine learning library

• Tensorboard - Tensorflow training visualisation tool

• Numpy - For array operations

• OpenCV - Python open source computer vision package library for image

processing

These packages are installed under python 3 virtual environment. Additional

packages such as tensorflow-for-poets 2 is used to train Inception-v3 CNN. A

full visualisation of the software setup can be seen in figure 3.3.

Page 17

Figure 3.3: Software environment setup diagram

3.5 Baseline Measures to Autonomous Driving

The validation of results is split into three different categories. Subsequently

lane-detection, traffic recognition and autonomous driving (both lane and sign

detection).

3.5.1 Traffic Sign Recognition Validation Methods

The validation of traffic sign recognition is commonly examined through train-

ing summaries of the deep learning model as shown in [9]. Additional factors

such as training convergence rates and image validation time is compared. In

the GTSRB [25], a ’new’ data set of traffic signs are used to validate the ac-

curacy of proposed deep learning models. For this project, training summaries

of Inception-v3 will be used for analysis where the spread of data will be

measured over 5000 epochs. Epochs are the number of iterations that passes

through the training network that allows adjustments to hidden layer neuron

weightings [30]. The training accuracy to epochs relation is calculated from

the loss function. Percentage accuracy in data is inversely proportional to the

cross-entropy loss function.

Page 18

CrossEntropyLoss = [−
n

∑
i=0

yi logyihat] (3.1)

Equation 3.1 from [30] shows the cross-entropy relation to be the inverse loga-

rithmic sum of input value yi and the predicted output value yihat .

3.5.2 Lane-Detection Validation Methods

Many validation techniques are available for lane-detection and autonomous driv-

ing models. A qualitative form of measure is defined by the SAE J3016 stan-

dards [10]. The measures are set from level 0 with no autonomous features and

safety to vehicles, up to level 5 reaching full autonomy that requires no human

intervention [31].

Additional qualitative measures include visual representation of high probability

failure points [7]. Failure points of the race track are visually updated during

each iteration of the neural network model, shown in figure 3.4. This method

allows identification of system reliability through visual cues (red- high failure

rate, black- high reliability rate).

Figure 3.4: Visual data analysis method used in [7]

From [6], a quantitative method of validation is proposed to calculate the per-

Page 19

centage autonomy value.

Autonomyvalue = (1− (number o f interventions)×6seconds)
elapsed time [seconds])

)×100 (3.2)

The value is based off the number of human interventions over the total driv-

ing time of the simulation vehicle. Interventions are due to errors caused by a

wrong prediction of the CNN model, and defined by a human taking over the

driving driving controls.

Page 20

4. Design Implementation

This section outlines the overall experimental process proposed in section 3 Method-

ology. Data collection and training progresses are aided with sample training

images and flowcharts to explain important design in practices. To reduce com-

plexity in interpreting the software architecture, table of summary with respect

to software training files are presented in table 4.4 with detailed descriptions.

4.1 Proposed Driving Model

The final high level driving model is shown in the figure 4.1 . The system is

based off driving architecture implemented in [6] back in figure 2.8.

During each frame of operation, the robot camera takes an image of resolution

320×240 pixels. A gray-scale filter is first applied to the image before storing

it in a local file drive. The filtered image acts as the primary input to the

driving system. This input image is segmented into two different regions of

interest for image classification. The bottom half of the image for lane keep-

ing, and the top half for traffic sign recognition. Both images are cropped into

320×96 pixel sized images. The sizing is further explained in Section 4.4 Driv-

ing Implementation section.

Cropped images are inputted through to the two corresponding image classifiers

to identify the correction action and output and of the vehicle. Output lane cor-

Page 21

Figure 4.1: Propose high level architecture for autonomous driving vehicle

rection classifier is the turning angle. Where as the resultant action of vehicle

for example, stop at stop sign is predicted using Inception-v3 CNN. This loop

is then repeated until the stop is terminated by the user.

4.2 Lane Detection Training

The trained model by [6] and [24] is used in the project to implement lane-

detection. The training sequence is outlined in the flow chart below in figure

4.2.

4.2.1 Lane Data Collection

To efficiently collect training data for the robot, a while loop was used to it-

erate image capturing operations during manual operation of the robot. Simul-

taneously the robot turning angle was recorded and updated in a text file with

the corresponding image label. For image training the robot was initially driven

Page 22

Figure 4.2: Data collection method for training sample collection for lane correc-
tion.

Figure 4.3: Data collection method proposed in [6]

within simulation course twice collecting around 2000 PNG image set. Before

each image is saved into the training directory, a gray-scale filter was applied

to reduce RGB features and file size. Each image taken is around 4-9 Kilo-

bytes.

To satisfy the input requirements defined by the training model constraint figure

2.7 the images are cropped to 320×96 pixel resolution. The initial path taken

by the robot during image collection is shown in Appendix A.2.

The list of different data sets taken for training for the experiment. As the file

Page 23

size for each image is small, the largest data set of 6305 images took 74.3MB

of storage space.

Table 4.1: Data sets taken for lane-detection training, *training data taken from
different system

Data Set Ref. No. of Images In Dataset File Size (MB)

1* 2768* 90.7*
2 827 9.4
3 3168 37.6
4 6004 73.1
5 2205 27.4
6 4312 51.1
7 5881 68.4
8 6305 73.3

4.2.2 Lane Training

The processed data sets are trained with code adapted from [32]. By running

the train.py in terminal command the tensorflow training model (model.py) is

called upon. The training is ran over 30 epochs of the model. During each

epoch iteration, weights of neuron layers are adjusted through dataset.py and

model.py file. Where the final output classifier is a checkpoint file that allows

the function to be called in tensorflow.

Training time varies with the sample size of the data sets. From training, it is

shown to be a linear relationship from figure 4.4. The results do not show any

exponential or non-linear correlation between the sample size of the training

data and training time. This is good as it proves that even by doubling or

quadrupling sample size of data sets, training is still feasible in terms of time

and CPU/GPU strain.

Page 24

Figure 4.4: Neural network training time to data set sample size

4.3 Traffic Recognition Training

4.3.1 Traffic Sign Data Collection

Compared to the lane-detection model, traffic sign recognition model required

more pre-processing prior to training. The training code was adapted from

the open-source Github repository (tensorflow-for-poets2) [33]. Requirements for

training implementation include inputting the correct resolution data input, plac-

ing data sets in classified buckets/ folders and implementing sample sizes of at

least 50 images per bucket.

Two different data sets were trained for the project. The first data set composed

of 2 buckets, ”GO” and ”STOP” classification. The second data set broadened

sign recognition network to 5 buckets, shown in figure 4.5. These buckets cor-

relate to the ”GO”, ”STOP”, ”Parking”, ”30Km/h” and ”Speed Cancel” signs

respectively.

Page 25

Figure 4.5: Buckets (files) with image data sets for neural network training

Table 4.2: First set of collected training images

Bucket Label Data Size
Percentage

Portion

GO 764 81.2%
STOP 177 18.8%

Table 4.3: Second set of collected training images with 5 signs

Bucket Label Data Size
Percentage

Portion
GO 764 60.3%
STOP 177 14.0%
30Kmh 121 9.6%
Parking 66 5.2%
SpeedCancel 139 10.9%

4.3.2 Traffic Sign Recognition Training

As defined in Table 2.1 by [1] and [34], Inception-v3 architecture requires 299×

299 sized inputs. The cropped 320×96 sized images are thereby resized before

training use.

The collected training images were ran through tensorflow-for-poets 2 package to

generate a classifier file labelled as retainedgraph.pb [33]. To validate new im-

ages the label.py file calls upon the generated classifier file to predict the new

image with an output string and prediction probabilities. The overall software

flow for training and classification is shown in figure 4.6.

Page 26

4.3.3 Data Augmentation Through Repetition

To increase the efficiency in collecting the training images, a python function

allowing a manual ’start’, ’stop’ to the robot camera was necessary. This is dif-

ferent to collecting lane data where the robot could just run through the Eye-

Sim road map without interruption. This manual operation allowed data aug-

mentation at similar marking points to allow increased data pool for specific

driving points. The function, named ”continue.py”, was also helpful in debug-

ging the classification model caused by low bucket frequency for both lane and

traffic sign detection (discussed in section 5).

Figure 4.6: General software overflow of traffic sign training

4.4 Driving Implementation

From table 4.4, the cardrive.py function implements a simple drive function.

The EyeSim robot drives at a constant set speed while updating the turning an-

gle at high frame rates. The robot code is tested by placing it parallel to the

lane then running the driving file. Left lane driving is desired as defined by

lane markings and training data where only left lane data is collected.

The proposed driving model from section 4.1 was successfully implemented in

EyeSim system using cardriveautonomous.py. Initially the models were ran indi-

Page 27

vidually, one for lane-detection and one for traffic sign recognition. By applying

a series pipeline to the robot, each classifier called is able to generate a pre-

dicted decision output for vehicle automation. Limitations to the model include

the robot camera’s FOV and processing speed explained in latter section 5.

4.5 Summary of Driving Functions

The following table 4.4 is a summary of the main training files for the project.

The categories are divided into:

• Data Collection, applies loops and image processing techniques to generate

a training data set.

• CNN Training, applies files sourced from [33], [32] to train image classi-

fiers.

• Autonomous Driving, simulation that applies trained classifier files to sim-

ple drive functions.

Page 28

Table 4.4: List of major software files required for training and operating of deep
learning robot.

Function Function Category File Name Function Description

Lane Detection Training collectimg.py
Drives and collects images from EyeSim robot.
Cropped images and steering angle text file is saved

Lane Detection Training collectimg continue.py
Drives and adds images to existing data set,
Allows user to pause the function recollect specific data points

Lane Detection Training train.py from [32]
Trains collected data set through CNN model,
and produces output prediction file

Lane Detection Classification model.ckpt Classifier model checkpoint file from CNN training output

Lane Detection Classification cardrive.py
Drives the model car without human interaction,
uses checkpoint file to predict turning angle

Traffic Sign
Recognition Training collectimg top.py

Drives and collects images from EyeSim robot.
Crops top section of images.
Allows user to pause, and
operate robot at desired data collection locations

Traffic Sign
Recognition Training retrain.py from [33]

Takes collected bucket files for training,
CNN architecture needs to be specified (Inception-v3)

Traffic Sign
Recognition Classification retrained graph.pb Output prediction file for traffic sign recognition

Traffic Sign
Recognition Classification teststop.py

Validation file for EyeSim traffic sign recognition,
Calls the retrained file to predict new input image

Driving
Implementation

(Autonomous Driving) autonomousdrive.py
EyeSim robot driving file that implements both
traffic sign recognition and lane-detection through
series subroutines

5. Discussion and Results

This section outlines the overall performance and results of the EyeSim robot.

Vehicle performance is analysed through proposed methodologies proposed in

recent literature. Limitations and future insight to deep learning of mobile robots

are also explored in this section.

5.1 Lane Detection Performance

From literature [6], lane detection was able to reach autonomous approximation

of 98%. In other words, the vehicle produced 1 error every minute. Errors are

Page 29

defined by the necessity of human intervention on the vehicle’s steering angle

due to prediction error. An example could be the vehicle going straight on a

curved road.

From this project, final results are shown to have up to 100% accuracy in lane

detection within a constrained environment. The visualisation of the path taken

by the autonomous EyeSim robot is shown in Appendix A.3. It is seen that the

trained robot is able to follow the lane markings accurately without deviating

into other lanes.

5.1.1 Autonomous Driving Correction and Training Bias

As stated in the methodologies section 3, and from Appendix A.2 training snap-

shot. The robot was ran in the left lanes, simulating a ’perfect’ drive path for

the training data. The resultant outcome for this left-lane training bias was ex-

hibited in the output prediction classifier, where the robot would turn into the

left lane if deviated or placed into the right lane.

Figure 5.1: EyeSim robot is
placed in ’wrong lane’

Figure 5.2: Robot exhibits lane change
correction due to training bias

An additional factor that affects the lane change correction is image cropping.

If the robot is placed in the right lane, by cropping the image, the trained

robot is able to detect the segmented image as a ”left turn”. This is likely due

Page 30

to a low cross-correlation value between images taken from a ”left turn” and

what the camera sees in the right lane [35]. As a result the robot will exhibit

this error correction behaviour 100% of the time on straight roads.

5.1.2 Data Augmentation: Deb-bugging

Autonomous lane detection classifier will not produce 100% accurate predictions

by simply running iterations of driving data. Bias towards going straight is of-

ten shown in driving. The solution is to increase the proportion of turning data

to remove bias in classifiers [6].

A major problem the EyeSim robot faced was turning at give-way lines and ze-

bra crossings where it was suppose to continue straight Appendix A.5 and A.4.

The initial solution was to increase the amount of training data by running

the robot through the course generating two times the sample data size (from

800 to 1500 training images). No significant performance were shown. The

next step was to increase the training set to 3168 images, 4 times the original

size. The results small improvements at zebra crossings lane centering. How-

ever, there were little to no improvement in approaching straight at give-way

lines and intersections Appendix A.6.

Table 5.1: Frequency of failures at points of interest. Frequency range: (Always
(100% of the time), Frequent (75%), Sometimes (50%), Seldom (<25%), No fail-
ures (0%))

Data Size Failure in Lane Failure in Intersection Failure at Zebra Crossing

827 Sometimes Frequent Frequent
1500 Seldom Always Always
3168 No Failures Always Seldom

The training outcomes are presented in Table 5.1 , where the failure rates of the

Page 31

EyeSim robot is defined as a qualitative measure.

5.1.2.1 Lane Detection Optimisation

The solution to the issue of turning was to increase the percentage data sample

size at the failure points identified from previous models. These high probability

failure points are defined as ROF (Regions of Failure) and were identified as:

• Zebra crossings: correct robot action to move straight.

• Intersections: correct robot action to move straight. Includes give ways

lines and stop lines.

The aim for this experiment is to determine an optimal proportion of normal

”Lane” marking to ”ROF” ratio to increase autonomous lane correction accu-

racy. Where ”Lane” marking is defined by vehicle driving straight or turning

under normal lane conditions, this excludes lane markings such as zebra cross-

ings and dotted give way lines.

From Table 4.4, the collecontinue continue.py file was used to add on data from

the previous models. Additional data was collected by manually moving the

robot to the points of interests and running the image collection function. This

step is repeated around 3 times at each intersection increasing data proportion

of images at the points of interest. Each iteration records around 50 images

shown in figure 5.3.

To test the trained classifiers, the robot was simulated both the outer and inner

lanes on the left lane. Pass or fail was recorded with respect to the points of

interest and its ability to correct turning angle (for example moving straight at

zebra crossing).

Page 32

Figure 5.3: Increase data portion at regions with high failure rates

5.1.2.2 Optimal Training Data Proportion

The summary of training data proportions are presented in the below tables.

ROF proportions ranges from 20% to 38.1%. With 20% as the baseline value

no additional ROF images given. Qualitative measures of autonomous driving

performance are taken for each of the ROF sample proportions, displayed in

Table 5.2.

Optimal Training: Sample Proportion 1 Optimal Training: Sample Proportion 2

Image Type
Data Size

Approx.
Portion (%)

TOTAL 3168 100%

Lane ∼2519 71.5%

ROF (crossings,

give ways)
∼649 20.5%

Image Type
Data Size

Approx.
Portion (%)

TOTAL 2205 100

Lane ∼1476 66.9%

ROF (crossings,

give ways)
∼729 33.1%

Page 33

Optimal Training: Sample Proportion 3 Optimal Training: Sample Proportion 4

Image Type
Data Size

Approx.
Portion (%)

TOTAL 4312 100

Lane ∼2952 68.0%

ROF (crossings,

give ways)
∼1360 31.5%

Image Type
Data Size

Approx.
Portion (%)

TOTAL 6305 100

Lane ∼3900 61.9%

ROF (crossings,

give ways)
∼2405 38.1%

Table 5.2: Frequency of failures at points of interest. Frequency range: (Al-
ways(100% of the time), Frequent (75%), Sometimes (50%), Seldom (<25%), No
failures (0%))

Data Size ROF Proportion Failure in Lane Failure in Intersection Failure at Zebra Crossing

3168 20.5% No Failures Always Sometimes
4312 33.1% No Failures Sometimes No Failures
2205 31.5% Seldom Sometimes No Failures
6305 38.1% No Failures No Failures No Failures

Shown in Table 5.2, the most effect proportion of data for the EyeSim robot

is shown to be approximately 38.1%. Using this image training proportion, the

robot is able to maneuver through the course without any failure. This is true

for both inner and outer lanes Appendix A.3 and A.7. In conclusion, by increas-

ing the training sample size at high frequency at only the ROFs, the CNN

model is able to adapt to complex environments. From this paper the ratio of

ROF’s to sample size of training data is shown to be approximately 38.1%.

5.1.3 Validation Through Foreign Environments

To test the validity of the trained model, the robot was run on a different

course that is unknown to the model. The factors altered in the new environ-

ment include colour of the road, lane markings, lane width and turn angles.

The model was initially tested on the follow track adapted from [8].

Page 34

Figure 5.4: New Track for lane detection validation

Features to the new track include:

• Darker road marking

• Wider lanes

• Sharper reflex angle turns

• Modified lane markings (wider, different colour)

The results of driving are suggestive to literature such as [6] and [23], where

the robot is able to follow majority of the lane markings without failure until

the critical turn angles displayed in figure 5.5.

Figure 5.5: ROF where EyeSim robot starts to fail

From the training data the maximum and minimum angles are shown to be 35

and -25 degrees respectively. Where the distribution is made up of greater than

Page 35

50% ”straight lane” data figure 5.6. Where from the figure the majority of the

turning angles are distributed between -15 and +25 degrees.

Figure 5.6: Robot’s turning angles from training data

Figure 5.7: Robot’s turning angles from training data compared to average angle
distribution from the New Test Environment

Page 36

From figure 5.7, it could be seen that 3.72% of the required turning angles

for the new environment lies above and below the training data range. Predic-

tions outside the scope of training data is thereby not possible for the model

resulting in failure to turn. To allow the model to adapt for this particular en-

vironment, higher proportion of data at reflex angle turns must be repeated to

reduce bias [6].

On the other hand the EyeSim robot is able to adapt to a foreign environment

with changes to lane width, markings and colour tone of road. This is proved

with a different environment shown in figure 5.8 where the distribution of turn

angles are noticeably lower and correlate to within the range of trained CNN

model for lane detection.

Figure 5.8: Successful adaptation of EyeSim robot to new environment (Race track
adapted from [8]

Page 37

5.1.4 Traffic Sign Performance

Two major classifications should be performed by the vehicle during autonomous

driving. This is defined by the vehicle’s ability to recognise and stop at a stop

sign or whether it is safe to move forward. For this, the system will have to

differentiate between two sets of buckets. ”Stop” and ”Go”. Further building of

the model included 5 buckets, correlating to the 5 different traffic signs in the

EyeSim racetrack. Two different traffic sign models were trained, with training

results covered in the next section.

5.1.4.1 Training Accuracy

Using the data shown from Table 4.2 and 4.3, training results showed accuracies

of 98.8% and 97.5% respectively with the Inception-v3 CNN architecture. This

closely aligns to past literature averages of around ∼98% [1].

Appendix A.9 A.10

5.1.4.2 Inception-v3 Limitations

To test the trained model, validation images were collected and ran through

the classifier. Tests showed high accuracy in predicting the type of sign in the

FOV (Field of View) of the robot. Moreover, real images were inputted to test

the model capacity. Depending on the image complexity, the model was able

to correctly determine the corresponding traffic sign with a lower confidence

interval figure 5.10

One major limitation to the Inception-v3 architecture is the processing speed of

the GPU. Evaluation time of images take anywhere from 1-1.8 seconds (0.5-1

frames per second) varying with image complexity. From [9] the performance

of different pre-trained neural networks, with Inception having GPU memory

issues from expensive GPU computations. For future works, it is suggested that

Page 38

Figure 5.9: Successful recognition of real life stop sign with low prediction confi-
dence interval.

a different pre-trained classifier is selected for traffic sign classification. These

include networks such as MobileNetV2 and SqueezeNet proposed by [9].

Figure 5.10: Performance of Pre-trained DLNNs [9]

5.1.5 Autonomous Driving Performance

The proposed autonomous driving vehicle proposed in Section 3 Methodology

was successfully implemented. A simple for loop was implemented by the robot

to stop when a stop signs are detected. Two trained models from Section 5.1.4

and 5.1.2.1 were pipe-lined. The EyeSim robot was able to drive within the

lanes and stop at the stop sign.

Page 39

5.1.5.1 Autonomous Driving Limitations

Output model is very restricted in terms of driving performance. The primary

factor that makes the model hard to debug is the system operation time of

inception-v3 classifier. The slow operation time results in long waiting times

for the robot between each operation decision, often ending up with slow stop

start drives between each frame.

The second factor is the FOV of robot camera. The angle placement of the

robot camera is relatively low, therefore the traffic signs is not visible when the

vehicle is at the stop line. Future work may include integration of depth per-

ception through computer vision and deep learning such as from [36] [37] [38].

Final factor that restricts the model shown from literature and project outcome

is adaption to foreign environments. As shown from lane correction models, ad-

dition of unknown factors to image lane-detection and image classification will

often result in system failure. Where one way to improve the CNN model is

to implement a wider spectrum of training data.

Page 40

6. Conclusion

6.1 Conclusion

The project scope covers autonomous operation of vehicles through the UWA

EyeSim virtual environment. The main topics of research included lane-detection

and traffic sign recognition through State-of-the-art methods of deep learning

such as CNN. The aim of the project was to implement a high accuracy au-

tonomous driving model proposed in section 3 of the report.

The final model showed success in autonomous driving within a confined envi-

ronment through EyeSim simulations. Through data augmentation and balancing

ROF proportions in training data, the system is able to adapt to foreign envi-

ronments with a 100% autonomy value as defined by [6]. However this was

limited to a large number of constraints such as driving angles, colour and lane

markings of the road.

The model was also able to detect and differentiate different traffic signs with

high accuracies. Results showed values of up to 98.8% through inception-v3

model. Limitations to traffic sign classification included low frame rate and

model prediction time.

Deep learning algorithms provides a cheap reliable solution to autonomous driv-

Page 41

ing. In many cases the deep learning method surpasses traditional computer vi-

sion techniques of autonomous driving. However, many opportunities to further

improve deep learning of vehicles due to the lowered performance reliability in

foreign environments.

6.2 Future Works

According section 5.1.4 and 5.1.2.1 of the report, many limitations exist with

the current models autonomous driving and deep learning. Constraints to the

model is caused by computational times of CNN architecture like Inception-v3

and serial pipelines of the driving model.

Future studies should include research into image classification models with re-

duced computational time. A system that implements parallel operation of CNN

models is also desired to increase safety integrity levels and reliability of the

robot. Additionally, due to the camera’s field of view, traffic signs are not

recognised at the exact location of the stop line. Therefore, distance prediction

through deep learning and image processing would highly improve the driving

experience to traffic sign detection.

Page 42

A. Appendix: Figures

A.1 SAE Levels of Automation

Figure A.1: SAE levels of Automation by [10]

Page 43

A.2 Initial Lane-Detection Training Path

Figure A.2: Path taken by robot during image collection for deep learning

A.3 Lane-Detection Validation Run

Figure A.3: Path taken by CNN trained Autonomous robot in EyeSim within the
same training environment

Page 44

A.4 Lane-Detection failure: 827 Images

Figure A.4: Initial trained robot with 800 images and no data repetition

A.5 Lane-Detection failure: 1500 Images

Figure A.5: Initial trained robot with 1500 images and no data repetition

Page 45

A.6 Lane-Detection Failure: 3168 images

Figure A.6: Path taken by CNN trained Autonomous robot with 3000 images and
no data repetition

A.7 Lane Detection CNN with 38.1% ROI proportion

Figure A.7: Successful lane detection with ROF

Page 46

A.8 Track use to Test Adaptability of CNN Model for

Lane correction

Figure A.8: Test track adapted from [8]

Page 47

A.9 Inception Traffic Sign Training Results

Figure A.9: Tensorflow training summary for 5 traffic signs

Figure A.10: Tensorflow training summary for 2 traffic signs

Page 48

A.10 Automation of EyeSim Robot- Traffic Sign and

Lane Detection

Figure A.11: Automated mobile robot

Page 49

References

[1] Chunmian Lin, Lin li, Wenting Luo, Kelvin Wang, and Jiangang Guo.

Transfer learning based traffic sign recognition using inception-v3 model.

Periodica Polytechnica Transportation Engineering, 47, 08 2018.

[2] Apple, mac m1 spec. https://support.apple.com/kb/SP824?

locale=en_AU. [Online] Accessed: 2021-10-06.

[3] Sun-Chong Wang. Artificial Neural Network, pages 81–100. Springer US,

Boston, MA, 2003.

[4] How convolutional neural networks accomplish image recog-

nition? https://www.kdnuggets.com/2017/08/

convolutional-neural-networks-image-recognition.html.

Accessed: 2021-04-13.

[5] Simon S. Haykin. Neural networks and learning machines. Prentice Hall,

New York, 3rd ed. edition, 2009.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs

Page 50

https://support.apple.com/kb/SP824?locale=en_AU
https://support.apple.com/kb/SP824?locale=en_AU
https://www.kdnuggets.com/2017/08/convolutional-neural-networks-image-recognition.html
https://www.kdnuggets.com/2017/08/convolutional-neural-networks-image-recognition.html

Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to

end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[7] Yunus Bicer, Ali Alizadeh, Nazim Kemal Ure, Ahmetcan Erdogan, and

Orkun Kizilirmak. Sample efficient interactive end-to-end deep learning for

self-driving cars with selective multi-class safe dataset aggregation. 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Nov 2019.

[8] pngree. Racetrack image png. https://pngtree.com/so/

race-track. [Online] Accessed: 2021-10-06.

[9] Piotr Szymak, Pawel Piskur, and Krzysztof Naus. remote sensing the ef-

fectiveness of using a pretrained deep learning neural networks for object

classification in underwater video. Remote Sensing, 12, 09 2020.

[10] Synopsys INC. The 6 levels of vehicle autonomy explained.

[11] Y. n. Dong and G. s. Liang. Research and discussion on image recog-

nition and classification algorithm based on deep learning. In 2019 Inter-

national Conference on Machine Learning, Big Data and Business Intelligence

(MLBDBI), pages 274–278, 2019.

[12] Simon S. Haykin. Neural networks and learning machines. Prentice Hall,

New York, 3rd ed. edition, 2009.

[13] D. Goularas and S. Kamis. Evaluation of deep learning techniques in sen-

timent analysis from twitter data. In 2019 International Conference on Deep

Page 51

 https://pngtree.com/so/race-track
 https://pngtree.com/so/race-track

Learning and Machine Learning in Emerging Applications (Deep-ML), pages

12–17, 2019.

[14] Michael P Ekstrom. Digital image processing techniques, volume 2. Aca-

demic Press, 2012.

[15] T. Gayathri Devi, P. Neelamegam, and S. Sudha. Image processing system

for automatic segmentation and yield prediction of fruits using open cv.

In 2017 International Conference on Current Trends in Computer, Electrical,

Electronics and Communication (CTCEEC), pages 758–762, 2017.

[16] Eyebot7-userguide. https://robotics.ee.uwa.edu.au/eyebot/

EyeBot7-UserGuide.pdf. Accessed: 2021-04-06.

[17] Pariwat Ongsulee. Artificial intelligence, machine learning and deep learn-

ing. In 2017 15th International Conference on ICT and Knowledge Engineering

(ICT KE), pages 1–6, 2017.

[18] John Slavio. Deep learning and artificial intelligence : a beginners’ guide

to neural networks and deep learning. [CreateSpace Independent Publishing

Platform], San Bernadino, CA, 2017.

[19] Jan. Drugowitsch. Design and analysis of learning classifier systems : a prob-

abilistic approach. Studies in computational intelligence ; v. 139. Springer,

Berlin, 2008.

[20] Digital image processing techniques. Computational techniques ; v. 2. Aca-

demic Press, New York, 1984.

Page 52

https://robotics.ee.uwa.edu.au/eyebot/EyeBot7-UserGuide.pdf
https://robotics.ee.uwa.edu.au/eyebot/EyeBot7-UserGuide.pdf

[21] T. Gayathri Devi, P. Neelamegam, and S. Sudha. Image processing system

for automatic segmentation and yield prediction of fruits using open cv.

In 2017 International Conference on Current Trends in Computer, Electrical,

Electronics and Communication (CTCEEC), pages 758–762, 2017.

[22] T. Gayathri Devi, P. Neelamegam, and S. Sudha. Image processing system

for automatic segmentation and yield prediction of fruits using open cv.

In 2017 International Conference on Current Trends in Computer, Electrical,

Electronics and Communication (CTCEEC), pages 758–762, 2017.

[23] Zhilu Chen and Xinming Huang. End-to-end learning for lane keeping of

self-driving cars. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages

1856–1860, 2017.

[24] Sully Chen. How a high school junior made a self-driving car, Dec 2018.

[25] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.

The german traffic sign recognition benchmark: A multi-class classification

competition. In The 2011 International Joint Conference on Neural Networks,

pages 1453–1460, 2011.

[26] Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for im-

proving deep learning in image classification problem. In 2018 International

Interdisciplinary PhD Workshop (IIPhDW), pages 117–122, 2018.

[27] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmark-

ing state-of-the-art deep learning software tools. In 2016 7th International

Conference on Cloud Computing and Big Data (CCBD), pages 99–104, 2016.

Page 53

[28] Apple. If you need to install rosetta on your mac. https://support.

apple.com/en-us/HT211861. [Online] Accessed: 2021-10-06.

[29] I. Kilic and G. Aydin. Traffic sign detection and recognition using ten-

sorflow’ s object detection api with a new benchmark dataset. In 2020

International Conference on Electrical Engineering (ICEE), pages 1–5, 2020.

[30] Saahil Afaq and Smitha Rao. Significance of epochs on training a neural

network. International Journal of Scientific & Technology Research, 9:485–488,

2020.

[31] SAE. Sae standards news: J3016 automated-driving

graphic update. https://www.sae.org/news/2019/01/

sae-updates-j3016-automated-driving-graphic. [Online]

Accessed: 2021-10-06.

[32] Sully Chen. Sullychen/autopilot-tensorflow. https://github.com/

SullyChen/Autopilot-TensorFlow. [Online] Accessed: 2021-10-06.

[33] Mark Daoust. googlecodelabs/tensorflow-for-poets-2. https://github.

com/googlecodelabs/tensorflow-for-poets-2. [Online] Ac-

cessed: 2021-10-06.

[34] Xiaoling Xia, Cui Xu, and Bing Nan. Inception-v3 for flower classification.

In 2017 2nd International Conference on Image, Vision and Computing (ICIVC),

pages 783–787. IEEE, 2017.

Page 54

https://support.apple.com/en-us/HT211861
https://support.apple.com/en-us/HT211861
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://github.com/SullyChen/Autopilot-TensorFlow
https://github.com/SullyChen/Autopilot-TensorFlow
 https://github.com/googlecodelabs/tensorflow-for-poets-2
 https://github.com/googlecodelabs/tensorflow-for-poets-2

[35] Feng Zhao, Qingming Huang, and Wen Gao. Image matching by normal-

ized cross-correlation. In 2006 IEEE International Conference on Acoustics

Speech and Signal Processing Proceedings, volume 2, pages II–II, 2006.

[36] Li Bing, Xu De, Feng Songhe, Wu Aimin, and Yang Xu. Perceptual depth

estimation from a single 2d image based on visual perception theory. In

Yueting Zhuang, Shi-Qiang Yang, Yong Rui, and Qinming He, editors,

Advances in Multimedia Information Processing - PCM 2006, pages 88–95,

Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[37] Ashfaqur Rahman, Abdus Salam, Mahfuzul Islam, and Partha Sarker. An

image based approach to compute object distance. International Journal of

Computational Intelligence Systems, 1:304–312, 03 2012.

[38] Zhihao Chen, Redouane Khemmar, Benoit Decoux, Amphani Atahouet, and

Jean-Yves Ertaud. Real time object detection, tracking, and distance and

motion estimation based on deep learning: Application to smart mobility.

In 2019 Eighth International Conference on Emerging Security Technologies

(EST), pages 1–6, 2019.

Page 55

	Introduction
	Introduction to Deep Learning
	Problem Statement
	Project Aim
	Document Outline

	Literature Review
	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Mathematical Models of Classifiers (SVM)

	Image Processing
	Image Enhancement
	Shape and Edge Detection

	Past Relevant Literature
	End to End Lane-Detection
	Traffic Sign Detection

	Methodology
	Experimental Overview
	Experimental Procedure
	EyeSim Simulation Environment
	Software Environment Setup
	Processor Speed
	Python Environment

	Baseline Measures to Autonomous Driving
	Traffic Sign Recognition Validation Methods
	Lane-Detection Validation Methods

	Design Implementation
	Proposed Driving Model
	Lane Detection Training
	Lane Data Collection
	Lane Training

	Traffic Recognition Training
	Traffic Sign Data Collection
	Traffic Sign Recognition Training
	Data Augmentation Through Repetition

	Driving Implementation
	Summary of Driving Functions

	Discussion and Results
	Lane Detection Performance
	Autonomous Driving Correction and Training Bias
	Data Augmentation: Deb-bugging
	Validation Through Foreign Environments
	Traffic Sign Performance
	Autonomous Driving Performance

	Conclusion
	Conclusion
	Future Works

	Appendix Appendix: Figures
	SAE Levels of Automation
	Initial Lane-Detection Training Path
	Lane-Detection Validation Run
	Lane-Detection failure: 827 Images
	Lane-Detection failure: 1500 Images
	Lane-Detection Failure: 3168 images
	Lane Detection CNN with 38.1% ROI proportion
	Track use to Test Adaptability of CNN Model for Lane correction
	Inception Traffic Sign Training Results
	Automation of EyeSim Robot- Traffic Sign and Lane Detection

	References

