
Optical	Flow	is	the	pattern	of	apparent	motion	of	objects,	surfaces	and	edges	in	a	visual	scene	caused	by	the
relative	motion	between	an	observer	and	the	scene.	With	one	single	camera(and	no	other	sensors)	and	optical
flow	method,	the	mobile	robot	can	detect	and	avoide	obstacles	in	realtime	successfully.

Optical	flow	uses	two	consecutive	frames	and	find	the	same	points	and	thus	get	their	motion	vectors.	Many
algorithms	have	been	come	up	with	mainly	in	categories:	dense	and	sparse.	The	former	computes	all	the	points
of	the	frame,	usually	all	the	pixels,	putting	them	into	smaller	grids.	Classic	algorithms	on	dense	matrix	are	the
Horn-Schunck	algorithm(rather	old,	depleted	in	opencv	3,	can	be	found	in	opencv	2	docs	here),	and	the	Gunnar
Farneback's	algorithm(implemented	in	opencv	2	and	opencv	3	with	samples	in	opencv	2,	more	information	in
opencv	3	docs	here),	and	more.	The	latter,	which	is	adopted	on	sparse	matrix	and	requires	much	less
computation,	finds	corners	first	and	then	only	finds	the	location	of	all	the	corners(instead	of	every	point)	in	the
next	frame.	Thus	it's	important	to	find	the	right	corners.	I	use	opencv	functions	instead	of	building	the	wheels
myself	in	that	frames	got	by	camera	with	opencv	are	in	the	format	of	opencv	 Mat ,	and	it's	always	quicker	to	do
computation	on	this	data	structure	with	opencv	functions	than	computing	every	pixel	by	oneself.

Here's	how	I	implemented	optical	flow	for	obstacle	avoidance	on	the	eyebot.

I	use	opencv	2.4.x	and	C++	for	the	code	as	many	functions	are	not	supported	well	in	C(opencv	3	doesn't	even
have	C	API).	Modifications	for	the	raspberry	pi	system	are	in	the	Raspberry_Pi3	directory.

Flow	Chart

Robotic	Obstacle	Avoidance	with	Optical	Flow
Wang	Feixuan

27/08/2016

1.	Introduction

2.	Optical	Flow

3.	Algorithm



initialize	camera(video	capture)
set	camera	resolution	to	QVGA(or	QQVGA	for	faster	computation)
print	some	information	on	LCD	screen
set	some	parameters	for	opencv	functions

As	optical	flow	uses	relative	motion,	get	one	frame	from	the	camera	before	the	while	loop.	Then	in	the	while
loop,	for	every	frame,	first	convert	it	to	grayscale	and	then	adopt	Shi-Tomasi	algorithm	with	opencv
goodFeaturesToTrack 	function	and	compare	with	those	from	the	last	frame.	Some	corners	may	be	lost,

especially	when	the	movement	is	rather	fast.	Thus	corners	need	refinding	every	frame.	Note	that	the	result	of
goodFeaturesToTrack 	is	in	the	integer	type,	and	should	be	made	more	exact	using	 cornerSubPix .

1.	init

2.	get	frames	and	find	corners

3.	compute	optical	flow



Then	get	all	the	optical	flow	vectors	from	the	two	frames	and	their	corners	with	opencv	function
calcOpticalFlowPyrLK .	This	method	uses	the	pyramidial	implementation	of	 Lucas-Kanade 	algorithm.

When	the	eyebot	moves	too	fast,	L-K	method	can	be	rather	inexact.	Thus,	use	the	pyramidial	implementation	of
L-K	method	to	get	a	more	exact	result.

The	screen	is	cut	into	two	parts:	left	and	right(for	UAVs	four).	Corners	and	their	optical	flows	are	categorized	into
left	and	right	and	their	numbers	and	sums	of	moduli	of	all	the	optical	flow	vectors	are	added.	Note	that	optical
flows	with	too-long	modulus	are	ignored	are	noise.

The	green	and	blue	dots	are	(current)	corners	and	the	lines	are	their	optical	flow	vectors.	The	yellow	lines	are
optical	flows	that	are	too	large.	In	this	frame	nearly	all	the	optical	flows	are	large,	which	indicates	that	the	eyebot
has	moved	very	fast.

In	the	picture	above,	green	dots	and	blue	ones	are	the	corners	in	the	left	and	right	side	of	the	frame	and	the	red
dots	are	potential	obstacles.	Around	this	frame	the	eyebot	moves	rather	slowly	as	no	distinct	optical	flow	vector
lines	can	be	seen.

Obstacle	are	computed	easily:	if	the	modulus	of	a	corner's	optical	flow	vector	is	larger	than	the	average	modulus
of	all	the	optical	flow	vectors	on	the	other	side,	then	the	corner	might	belong	to	an	obstacle.

To	display	frames	on	the	LCD	screen,	first	save	the	image	to	a	temporary	file(absolute	path	needed)	with
imwrite 	and	then	use	 LCDImage 	from	eyebot	API.	Using	opencv	window	or	movedWindow	can	be	rather

slow.

To	avoid	more	noise	lower	down	the	camera.	But	with	a	good	implementation	and	better	weight	parameters	the
corners	in	the	back	should	not	be	so	big	a	problem	as	the	corners	there	should	move	much	slower	than	the
obstacles	in	the	front.

4.	Compute	potential	obstascles

5.	Move	with	Balance	Strategy



With	all	the	information	of	the	motion	field,	the	eyebot	then	adopts	Balance	Strategy	to	decide	the	next
orientation.	If	the	balance	strategy	is	smaller	than	a	threshold,	then	the	eyebot	goes	straight;	otherwise,	an
angle	is	computed	and	the	orientation	is	drawn	on	the	screen,	and	the	eyebot	takes	a	turn	accordingly.

The	basic	equation	for	the	turning	angle	is:

where	 w 	can	be	either	the	sum	or	the	average	of	moduli	of	optical	flow	vectors	on	each	side.	In	my	code	I	use
different	weights	for	both	the	sum	and	the	average	of	all	the	optical	flows	and	the	sum	of	those	of	potential
obstacles	for	a	better	result.

The	next	orientation	is	drawn	on	the	screen.

Use	eyebot	API	V-Omega	functions	to	go	straight	or	move.	Note	that	always	wait	for	a	while	or	use
VWDriveWait() 	after	making	a	turn.	 VWStop() 	and	 VWExit() 	are	specially	written	for	stopping	and	directly

exiting	the	program.

psd.cpp 	uses	infrared	for	better	detection	as	optical	flow	can	only	detect	obstacles	in	the	camera	view.
Optical	flow	cannot	detect	obstacles	right	in	front	of	it	as	thus	the	weighted	sum	of	left	and	right	can	be	very
similar.

final.cpp 	has	an	interactive	GUI	and	better	format	of	code,	but	the	dense	method	is	not	finished.	Also,	the
driving	part	of	it	needs	testing	as	when	I	tested	it	all	of	the	pis	got	stalled	with	continuous	signals,	which	didn't
happen	when	I	tested	the	pi	before	with	 psd.cpp (which	is	strange	as	the	driving	part	of	code	didn't	change).

Parameters	for	calculating	the	optical	flow	and	finding	good	corners	to	track	may	need	further	adjusting	for
better	results.

computation	of	 FOE (focus	of	expansion)	on	both	dense	and	sparse	matrix

[1]	秦峰,	刘甜甜,	尤海鹏,	麦宇庭,	赵黎明,	and	陈言俊.	“基于图像识别的水下机器人自主避障系统.”	兵工自动化	11
(2012):	24.
[2]	肖雪,	秦贵和,	and	陈筠翰.	“基于光流的自主移动机器人避障系统.”	计算机工程	39,	no.	10	(2013):	305–308.
[3]	赵海,	陈星池,	王家亮,	and	曾若凡.	“基于四轴飞行器的单目视觉避障算法,”	2014.	
[4]	Born,	Christof.	“Determining	the	Focus	of	Expansion	by	Means	of	Flowfield	Projections.”	In	In	Proc.	Deutsche
Arbeitsgemeinschaft	Fur	Mustererkennung	DAGM’94,	711–719,	1994.
[5]	Negahdaripour,	Shahriar,	and	Berthold	KP	Horn.	“A	Direct	Method	for	Locating	the	Focus	of	Expansion.”
Computer	Vision,	Graphics,	and	Image	Processing	46,	no.	3	(1989):	303–326.
[6]	O’Donovan,	Peter.	“Optical	Flow:	Techniques	and	Applications.”	The	University	of	Saskatchewan,	2005.	[7]
Plyer,	Aurélien,	Guy	Le	Besnerais,	and	Frédéric	Champagnat.	“Massively	Parallel	Lucas	Kanade	Optical	Flow
for	Real-Time	Video	Processing	Applications.”	Journal	of	Real-Time	Image	Processing	11,	no.	4	(April	22,	2014):
713–30.	doi:10.1007/s11554-014-0423-0.
[8]	Prazdny,	K.	“Determining	the	Instantaneous	Direction	of	Motion	from	Optical	Flow	Generated	by	a
Curvilinearly	Moving	Observer.”	In	1981	Technical	Symposium	East,	199–206.	International	Society	for	Optics
and	Photonics,	1981.	[9]	Souhila,	Kahlouche,	and	Achour	Karim.	“Optical	Flow	Based	Robot	Obstacle

6.	Move

4.	TODO

5.	References



Avoidance.”	International	Journal	of	Advanced	Robotic	Systems	4,	no.	1	(2007):	13–16.
[10]	Tistarelli,	M.,	E.	Grosso,	and	G.	Sandini.	“Dynamic	Stereo	in	Visual	Navigation.”	In	Computer	Vision	and
Pattern	Recognition,	1991.	Proceedings	CVPR’91.,	IEEE	Computer	Society	Conference	on,	186–193.	IEEE,
1991.	
[11]	基于光流法的视觉避障系统研究	Visual	Obstacle	Avoidance	System	Based	on	Optical	Flow	Method.”
Accessed	July	27,	2016.


